Check out my Google Scholar profile for more details.

 

Conference publications

  • On Mutual Information Maximization for Representation Learning
    (ICLR 2020, paper, arxiv)
    Michael Tschannen, Josip Djolonga, PKR, Sylvain Gelly, Mario Lucic

     

  • Practical and Consistent Estimation of f-Divergences
    (NeurIPS 2019, paperarxiv)
    PKR, Olivier Bousquet, Josip Djolonga, Carlos Riquelme, Ilya Tolstikhin

     

  • The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA
    (UAI 2019, paperarxiv, supplement)
    Luigi Gresele*, PKR*, Arash Mehrjou, Francesco Locatello, Bernhard Schölkopf

     

  • From Deterministic ODEs to Dynamic Structural Causal Models
    (UAI 2018, paper, supplementarxiv)
    PKR, Stephan Bongers, Bernhard Schölkopf, Joris M. Mooij

     

  • Causal consistency of structural equation models
    (UAI 2017 with oral presentation, paper, supplementarxiv, presentation slides)
    PKR*, Sebastian Weichwald*, Stephan Bongers, Joris M. Mooij, Dominik Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf

     

  • A kernel test for three-variable interactions with random processes
    (UAI 2016, paper, supplement, arxiv)
    PKR, Kacper P. Chwialkowski, Arthur Gretton

Preprints, workshop papers, etc

  • Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
    (NeurIPS 2019 Workshop “Do the right thing”, arxiv)
    Julius von Kügelgen, PKR, Bernhard Schölkopf, Adrian Weller

  • An Empirical Study of Generative Models with Encoders
    (2018, arxiv)
    PKR, Yunpeng Li, Dominik Roblek

  • Wasserstein Auto-encoders: Latent Dimensionality and Random Encoders
    (ICLR workshop paper, 2018, poster, paper)
    PKR, Bernhard Schölkopf, Ilya Tolstikhin

  • Learning Disentangled Representations with Wasserstein Auto-Encoders
    (ICLR workshop paper, 2018, poster, paper)
    PKR, Bernhard Schölkopf, Ilya Tolstikhin

  • On the Latent Space of Wasserstein Auto-Encoders
    (2018, arxiv)
    PKR, Bernhard Schölkopf, Ilya Tolstikhin

  • Probabilistic Active Learning of Functions in Structural Causal Models
    (2017, arxiv, workshop posterslides)
    PKR, Ilya Tolstikhin, Philipp Hennig, Bernhard Schölkopf

  • Masters thesis: Three Variable Kernel Independence Testing with Time Series (2015)

  • The VC-Dimension of Similarity Hypothesis Spaces
    (2015, arxiv)
    Mark Herbster, PKR, James Townsend