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Abstract

We apply a Wild Bootstrap method to the Lancaster interaction statistic to detect

dependencies between three time series.

The Wild Bootstrap is a method to resample a test statistic given some observed

data, subject to certain conditions on both the test statistic and the observed data.

The main contribution of this thesis is to prove that the Lancaster interaction satisfies

the conditions on the test statistic under the null hypothesis of its statistical test.

Furthermore, we present a novel proof that the same is true of the Hilbert Schmidt

Independence Criterion (HSIC) statistic.

We demonstrate with this method that the Lancaster interaction is sensitive to

dependences between three variables in certain cases that HSIC is not - these are

cases in which any two variables interact weakly, but all three share a strong mutual

dependency.

For accompanying code, see

https://github.com/paruby/CSML-Thesis-code-repo
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1 Introduction

A basic problem in machine learning and statistics is independence testing: Given

pairs of observations D “ tpXi, Yiq, i “ 1, . . . , nu, are the Xs and Y s independent?

The Hilbert Schmidt Independence Criterion (HSIC) [1][2] is a kernel methods ap-

proach to answering this question in the case that the observations pX, Y q are drawn

iid from a distribution PXY . More detail will be given about the test in the following

section but in short, HSIC uses the properties of kernels to measure a ‘distance’ be-

tween empirical estimates for the joint distribution PXY and the product of marginals,

PXPY .

HSIC has been recently extended in two new ways: a test for two variables with

time series data [3]; and a test for three variables with iid data[4]. This project is an

effort to combine these two extensions. See Figure 1 for a graphical representation

of this.

First, rather than considering two random variables, we may be interested in

three. With three random variables, there are more complicated forms of dependence

(or independence) that can exist than with two variables. One question that can be

asked is whether one variable is independent of the other two, or if they are all

mutually independent - equivalently, we may ask: “does the joint distribution PXY Z
factorise into a product of marginals in some way?” The Lancaster interaction [4][5] is

non-zero if the answer to the preceding question is no, and so using it we can design

a statistical test for which rejection of the null hypothesis implies that the joint

distribution does not factorise. This has applications to conditional independence

testing, in which two variables X and Y may be independent when considered only

together but become dependent when conditioned on a third, Z. This is equivalent

to saying that PXY “ PXPY but that PXY Z does not factorise. Such relationships

between three variables are known as V-structures. Their detection is an important

part of causal inference. See eg [6] and [7].

Second, rather than considering iid data, we may be interested in time series

data. Any frequentist statistical hypothesis test is composed of two parts. We must

first construct a test statistic - that is, a function of the observed data. Having

1



done this, we must see where the value of our test statistic lies in comparison to

the distribution of the statistic under the null hypothesis (the null distribution). If

the value is more ‘extreme’ than a prearranged threshold, we may reject the null

hypothesis.

In general, the null distribution is dependent on the distributions of the underly-

ing variables from which our observations are drawn. Since this is not something we

are privy to, we must estimate the null distribution from the existing observations

(this is often referred to as bootstrapping). The existing methods to do this for HSIC

and Lancaster fail when the data are not iid.

In a recent paper [8], a method called the Wild Bootstrap is presented that extends

work previously done by Shao [9]. This is a bootstrap method that can be applied

to certain types of statistical tests to simulate samples of the test statistic under the

null hypothesis, provided that the observed data are drawn from a process satisfying

certain conditions (τ -dependence and stationarity). It has already been shown in

[3] that HSIC satisfies the conditions required on the test statistic to use the Wild

Bootstrap.

The main contribution of this thesis is to show that, under certain conditions on

the observed data, the Wild Bootstrap method can be applied to Lancaster statistic.

In addition, the proof of this is easily adapted to provide a new, simpler proof that

the Wild Bootstrap can be used with HSIC. A second, more minor contribution is to

show that the power of the Lancaster test described in [4] can be improved - in trying

to account for multiple testing error rates, the authors of this paper use conservative

thresholds for p-values. It is shown in this thesis that the thresholds can be relaxed,

thus increasing power, while still guaranteeing the desired Type I error.

This thesis is structured as follows. In Section 2, we discuss in detail the HSIC and

Lancaster statistics, and the concepts required to understand the Wild Bootstrap.

In Section 3, the main result of this work is presented - namely, that the Lancaster

statistic satisfies the conditions required to be able to use the Wild Bootstrap to

resample the statistic under the null hypothesis. A simpler, adapted version of this

proof is first given to show that HSIC satisfies the conditions, after which the proof

for the Lancaster statistic is given. It is not a new result that the Wild Bootstrap
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Figure 1: A diagram to show how the work in this thesis relates to existing work.

can be applied to the HSIC statistic; the novel proof given here is, however, arguably

simpler than the existing proof given in [10], and demonstrates the main ideas of

the proof for the Lancaster statistic in a less algebraically involved setting. This

‘preview’ will aid the reader in following the proof for the Lancaster statistic.

In Section 4, we compare the performance of the Lancaster test developed with

two HSIC-based tests on artificial and real forex data. We find that Lancaster

outperforms the two HSIC-based tests in situations for which three variables exhibit

weak pairwise dependences, but a strong joint (three-way) dependence. In cases for

which strong pairwise interactions are present, the Lancaster test does not perform

as well.

Section 5 concludes the thesis with a discussion of the results, closing remarks

and directions for future research.
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2 Background

In this section, the background theory necessary to understand the result of this

thesis is introduced. The author suggests that the reader mentally divide this theory

into two categories: understanding the HSIC and Lancaster statistical tests in the

case that our observations are drawn iid ; and understanding the conditions that

must be met to be able to use the Wild Bootstrap to adapt these tests when our

observations are not iid.

We will first give a very brief introduction to the theory of reproducing kernel

Hilbert spaces (RKHSs). For further information, the interested reader may consult

[11], [12],[13], [14] and [15]. Our main objective here is to introduce the kernel mean

embedding [16], a method that, subject to certain conditions, injectively embeds

measures into a Hilbert space and so induces a metric on probability distributions.

This method is the basis of our statistical tests.

Next the Hilbert-Schmidt Independence Criterion (HSIC), a statistical test for

detecting dependence between two random variables, is introduced for the iid case.

Then, the Lancaster interaction, which can be viewed as a generalisation of HSIC to

three random variables, is introduced, also for the iid case.

We then set the stage for describing how we may deal with non-iid data. We will

give a basic formal definition for certain types of time series. Then we will describe

a common class of statistics known as V-statistics. Having done this, we will be able

to describe the Wild Bootstrap.

2.1 Kernel basics

Definition 1 (Kernel). Let X be a non-empty set. A kernel on X is a function

k : X ˆ X ÝÑ R for which there exists a Hilbert space H and a feature map

φ : X ÝÑ H such that, for all x, y P H

kpx, yq “ xφpxq, φpyqyH

Definition 2 (Gram matrix). Let k be a kernel on X and suppose that D “ tX1, . . . , Xnu
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is a set of samples from X . The Gram matrix is an nˆ n matrix with entries

Kij “ kpXi, Xjq, i, j P t1, . . . , nu

Remark (Notation). Throughout this thesis, we will use the convention that lower

case letters are used for kernels and the corresponding upper case letters are used for

the corresponding Gram matrices.

Definition 3 (Reproducing kernel Hilbert space). Let H be a Hilbert space of R-

valued functions defined on a non-empty set X . A function k : X ˆ X ÝÑ R is a

reproducing kernel of H, and H is a reproducing kernel Hilbert space (RKHS), if

(i) @x P X , kp¨, xq P H

(ii) @x P X , @f P H, xf, kp¨, xqyH “ fpxq

Remark (Feature maps). There may be many possible choices of feature maps to

represent any given kernel. We call φpxq “ kp¨, xq as written above the canonical

feature map. In general, it may not be useful (or even practically possible) to explicitly

represent φ. Indeed, part of the power of kernels is that we can implicitly work in

a high (possibly infinite) dimensional feature space without ever having to explicitly

represent it.

The above definitions say that, given a reproducing kernel Hilbert space, we can

take any point x P X and embedd it in the RKHS as φpxq “ kp¨, xq. This then allows

us to evaluate any function f P H at x by taking an inner product: fpxq “ xf, φpxqyH.

Under certain conditions, we can extend this notion to embedding probability

distributions. This allows us to calculate the expectation of a function by taking its

inner product with respect to the element in H corresponding to the embedding of

the distribution.

Definition 4 (Mean embedding). Let PX be a probability measure on X and let

X „ PX be a random variable on X . The mean embedding µPX of PX is an element

of H satisfying

5



EX„PXfpXq “ xf, µPXy

for all f P H

It is not obvious from this definition whether µPX exists. The following theorem

provides a sufficient condition for this:

Theorem 2.1. Suppose that k is measurable and that EX„PX
a

kpX,Xq ă 8. Then

µPX P H.

Consequently, if k is bounded (ie DC s.t. kpx, yq ď C @x, y P X ) then the mean

embedding exists for any probability distribution on X

For a proof of this, see [17]. Throughout this thesis, we will assume that all

kernels under consideration are bounded, and hence mean embeddings always exist.

Remark. For intuition, we can think of the mean embedding of a distribution as the

expectation of an H-valued random variable φpXq:

µPX “ EX„PX rkp¨, Xqs “ EX„PXφpXq

Remark (Distances between probability distributions). Observe that the kernel mean

embedding induces a map

tProbability distributions on X u ÝÑ H

P ÞÑ µP

Provided this is injective, this induces a metric on tProbability distributions on X u:

dpP,Qq “ }µP ´ µQ}

Kernels for which this map is injective are known as characteristic[18]. It is not

within the scope of this thesis to go into more detail, but it suffices to say that the

Gaussian kernel (defined below) is characteristic.
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Definition 5 (Gaussian kernel). Suppose that X Ď Rm for some m P N The Gaus-

sian kernel with bandwidth parameter σ P Rą0 is

kσpx, yq “ expp´
}x´ y}2

2σ2
q

Theorem 2.2. The Gaussian kernel is indeed a kernel which is moreover character-

istic.

For proof, see Proposition 4.10 and Theorem 4.47 of [14].

Remark. Many kernel statistical tests, and in particular the ones that will be consid-

ered in this thesis, can be viewed as essentially exploiting this ‘metric on probability

distributions’. For example, the MMD [19] is a test to see whether two samples have

come from the same distribution. This uses the fact that }µP´µQ}
2 “ 0 ðñ P “ Q,

and then constructs a test working with finite samples based on this. We are inter-

ested here in independence testing - for example, does }µPXY ´ µPXPY }
2 “ 0? - and

so we must build some more theory to be able to consider kernels on more than one

random variable.

We now follow closely [2]

Definition 6 (Hilbert-Schmidt norm). Suppose that F and G are separable Hilbert

spaces with orthonormal bases tuiu and tviu respectively, and suppose that C : G ÝÑ
F is a linear operator. Then, provided that the sum converges, the Hilbert-Schmidt

(HS) norm of C is defined as

}C}2HS :“
ÿ

ij

xCvi, ujy
2
F

Definition 7 (Hilbert-Schmidt operators). A linear operator C : G ÝÑ F is called a

Hilbert-Schmidt operator if its HS norm exists. The set of Hilbert-Schmidt operators

from G to F , denoted HSpG,Fq, is a separable Hilbert space with inner product

xC,DyHS :“
ÿ

ij

xCvi, ujyFxDvi, ujyF

7



Definition 8 (Tensor product). Let f P F and g P G. The tensor product operator

f b g : G ÝÑ F is defined as

pf b gqh :“ fxg, hyG @h P G

Remark. Note that for f, a P F and g, b P G

xf b g, ab byHS “
ÿ

ij

xpf b gqvi, ujyxpab bqvi, ujy

“
ÿ

ij

xxg, viyf, ujyxxb, viya, ujy

“
ÿ

ij

xg, viyxf, ujyxb, viyxa, ujy

“ xf, ayFxg, byG

And in particular,

}f b g}2HS “ xf b g, f b gyHS

“ xf, fyFxg, gyG

and so f b g P HSpG,Fq

Remark (Kernels on pairs of variables). Suppose that X and Y are (not necessarily

independent) random variables taking value in X and Y respectively. We consider

the pair pX, Y q to be a random variable taking value in X ˆY with joint distribution

PXY .

Suppose that k is a kernel on X with canonical feature map φ and RKHS F and

l is a kernel on Y with canonical feature map ψ and RKHS G. We can construct

from these a new kernel z on X ˆ Y via
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zppx1, y1q, px2, y2qq “ xφpx1q b ψpy1q, φpx2q b ψpy2qyHSpG,Fq

“ xφpx1q, φpx2qyFxψpy1q, ψpy2qyG

“ kpx1, x2qlpy1, y2q

Using this, we can embed the joint distribution PXY via

µPXY “ EpX,Y q„PXY rφpXq b ψpY qs

“ EXY rφpXq b ψpY qs

and the product of marginals

µPXPY “ EpX,Y q„PXPY rφpXq b ψpY qs

“ EXEY rφpXq b ψpY qs

“ EXrφpXqs b EY rψpY qs

“ µPX b µPY

For shorthand, we write µXY instead of µPXY , µX instead of µPX , and µY instead

of µPY .

Throughout this thesis, we will assume that all kernels, including those defined

over pairs and triples of variables, are characteristic.

2.2 Hilbert-Schmidt Independence Criterion (HSIC)

We are now in a position to discuss HSIC. Again, this will only be a brief overview.

For a more in depth explanation, see [1] and [2]. The problem we are interested in

9



solving is the following:

Problem 1. Suppose we are given a set of iid samples tpXi, Yiq, i “ 1, . . . , nu of

random variables X and Y taking value in X and Y respectively. Can we tell if X

and Y are independent?

Equivalently, we may ask: does the joint distribution on pX, Y q factorise into the

product of marginals? ie, does PXY “ PXPY ?

Let us fix some notation. We assume that k is a kernel on X with associated

feature map φ, and that l is a kernel on Y with associated feature map ψ

In [2], the cross-covariance operator is defined to be

CXY :“ EXY rpφpXq ´ µXq b pψpY q ´ µY qs

“ EXY rφpXq b ψpY qs ´ µX b µY
“ µXY ´ µX b µY

Observe that, since we assume the kernel on pX, Y q to be characteristic, CXY “

0 ðñ PXY “ PXPY . We can exploit this to construct a statistical test for

independence. We first define:

Definition 9 (HSIC). HSICrPXY s “ }CXY }2HS

Observe that HSICrPXY s can be written in terms of inner products of mean

embeddings:

10



HSICrPXY s “ }CXY }2HS
“ }µXY ´ µX b µY }

2

“ xµXY , µXY y ´ 2xµXY , µX b µY y ` xµX b µY , µX b µY y

“ xEXY rφpXq b ψpY qs,EXY rφpXq b ψpY qsy

´ 2xEXY rφpXq b ψpY qs,EXrφpXqs b EY rφpY qsy

` xEXrφpXqs b EY rφpY qs,EXrφpXqs b EY rφpY qsy

In general we do not have access to PXY and so we cannot evaluate HSICrPXY s
(indeed, if we did we would not need to construct a complex statistical test to

determine whether or not PXY factorises!). Suppose that we are given independent

samples D “ tpXi, Yiq, i “ 1, . . . , nu drawn from PXY . We define the following

quantities, which we can think of as estimating the mean embeddings as follows1:

µ̃XY :“
1

n

ÿ

i

φpXiq b ψpYiq « EXY rφpXq b ψpY qs “ µXY

µ̃X :“
1

n

ÿ

i

φpXiq « EXφpXq “ µX

µ̃Y :“
1

n

ÿ

i

φpYiq « EY φpY q “ µX

This gives rise to a (biased) estimate which can be expressed in terms of the

Gram matrices K and L:

1This is a useful intuition for understanding HSIC, but to avoid having to consider technicalities
we will not make this notion precise.
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HSICbrDs “ }µ̃XY ´ µ̃X b µ̃Y }2

“ xµ̃XY , µ̃XY y ´ 2xµ̃XY , µ̃X b µ̃Y y ` xµ̃X b µ̃Y , µ̃X b µ̃Y y

“ x
1

n

ÿ

i

rφpXiq b ψpYiqs,
1

n

ÿ

j

rφpXjq b ψpYjqsy

´ 2x
1

n

ÿ

i

rφpXiq b ψpYiqs, r
1

n

ÿ

j

φpXjqs b r
1

n

ÿ

r

φpYrqsy

` xr
1

n

ÿ

i

φpXiqs b r
1

n

ÿ

j

φpYjqs, r
1

n

ÿ

r

φpXrqs b r
1

n

ÿ

s

φpYsqsy

“
1

n2

ÿ

ij

xφpXiq, φpXjqyxψpYiq, ψpYjqy

´
2

n3

ÿ

ijr

xφpXiq, φpXjqyxψpYiq, ψpYrqy

`
1

n4

ÿ

ijrs

xφpXiq, φpXrqyxψpYjq, ψpYsqy

“
1

n2

ÿ

ij

KijLij ´
2

n3

ÿ

ijr

KijLir `
1

n4

ÿ

ijrs

KirLjs

This empirical estimate of HSIC converges to its population (ie true) value at a

rate of Op1{
?
nq [20][2].

We wish to use this function of the observations as test statistic. The null hy-

pothesis in our test, H0, is that PXY “ PXPY . The alternative hypothesis H1, is that

PXY ‰ PXPY . Thus, under H0, HSICbrDs ÝÑ 0 and under H1, HSICbrDs ÝÑ c

for some c ą 0 as the number of data grow.

HSICbrDs is a random variable and thus has some distribution. For any finite

sample size we need to be able to estimate the distribution under the null hypothesis

in order to be able to find a threshold value of the test statistic at which we would

reject the null hypothesis. We do this using a permutation bootstrap method to

simulate draws of the statistic from its null distribution.
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Observe that samples pXi, Yiq are iid for different i, and therefore Xi will be inde-

pendent of Yj for i ‰ j even if X and Y are dependent. By applying a permutation

π to the indices of one of the variables, we can therefore simulate a sample from the

distribution PXPY :

D1 “ tpXi, Yπpiqq, i “ 1, . . . , nu

By simulating a large number of draws in this way, we can estimate the null

distribution of the test statistic and calculate a threshold value, given a desired

Type I error α.

In summary, the statistical test described above, HSIC, gives us a procedure for

which rejection of the null implies that PXY does not factorise. Since HSICbrDs ÝÑ
0 ðñ H0 holds, the probability of falsely accepting the null hypothesis tends to

zero for any fixed (non-factorising) distribution, and so HSIC is consistent.

2.3 Lancaster statistic

The Lancaster test is a natural generalisation of HSIC to three random variables,

however as we will see it lacks consistency. We are interested in answering the

following:

Problem 2. Suppose we are given a set of iid samples tpXi, Yi, Ziq, i “ 1, . . . , nu of

random variables X, Y and Z taking value in X , Y and Z respectively. Can we tell

if any of the variables are independent of the others?

Equivalently, we may ask: does the joint distribution on pX, Y, Zq factorise in

some way? (For example, does PXY Z “ PXY PZ?)

In an ideal world, we would like to be able to construct a statistical test that

returns a definitive yes or no to the above question, subject to diminishing Type I

and II errors as the number of observations grows.

The Lancaster test does not quite do this. Instead, it is a test for which rejection

of the null hypothesis implies that the joint distribution does not factorise. If the
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null hypothesis is not rejected, we cannot conclude whether the joint distribution

factorises or not, as we will see shortly.

Before we describe the test, let us first fix some notation. We suppose that X, Y

and Z are random variables taking value in X , Y and Z respectively. We suppose

that k, l and m are kernels on X , Y and Z with canonical feature maps φ, ψ and

ω respectively. We are given iid samples D “ tpXi, Yi, Ziq, i “ 1, . . . , nu. The Gram

matrices with respect to these data are written K, L and M .

The Lancaster interaction measure is a signed measure, defined as follows:

∆LP “ PXY Z ´ PXY PZ ´ PXZPY ´ PXPY Z ` 2PXPY PZ

Claim 2.1. If any variable is independent of the other two, then the Lancaster in-

teraction vanishes. That is,

pX, Y q KK Z _ pX,Zq KK Y _ pY, Zq KK X ùñ ∆LP “ 0

Proof: By symmetry, it suffices to consider the case pX, Y q KK Z.

In this case, PXY Z “ PXY PZ . By marginalising out X or Y , we obtain PY Z “
PY PZ and PXZ “ PXPZ . Thus

∆LP “ PXY Z ´ PXY PZ ´ PXZPY ´ PXPY Z ` 2PXPY PZ
“ PXY PZ ´ PXY PZ ´ PXPY PZ ´ PXPY PZ ` 2PXPY PZ
“ 0

�

Unfortunately, the reverse implication does not hold - see Table 1 for an exam-

ple of three binary variables with non-factorising joint distribution but vanishing

Lancaster interaction2.

Generalising the tensor product notation introduced in the previous section, we

can define the kernel kb lbm on X ˆY ˆZ with canonical feature map φbψb ω

as:

2Note that this Table has been lifted directly from [4], and is not my own work.
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Table 1: An example of three binary variables for which the joint distribution does not factorise,

yet whose Lancaster interaction is zero. Note that this table is taken from [4] as is not my own

work.

P p0, 0, 0q “ 0.2 P p0, 0, 1q “ 0.1

P p0, 1, 0q “ 0.1 P p0, 1, 1q “ 0.1

P p1, 0, 0q “ 0.1 P p1, 0, 1q “ 0.1

P p1, 1, 0q “ 0.1 P p1, 1, 1q “ 0.2

k b l bmppx1, y1, z1q, px2, y2, z2qq “ xφpx1q b ψpy1q b ωpz1q, φpx2q b ψpy2q b ωpz2qy

“ xφpx1q, φpx2qyxψpy1q, ψpy2qyxωpz1q, ωpz2qy

“ kpx1, x2qlpy1, y2qmpz1, z2q

As such, we can define the mean embedding of the Lancaster interaction measure.

For simplicity, we will refer to the embedded version of the signed measure also as

∆LP :

∆LP “ µPXY Z ´ µPXY PZ ´ µPXZPY ´ µPXPY Z ` 2µPXPY PZ

“ EpX,Y,Zq„PXY ZφpXq b ψpY q b ωpZq ´ EpX,Y,Zq„PXY PZφpXq b ψpY q b ωpZq

´ EpX,Y,Zq„PXZPY φpXq b ψpY q b ωpZq ´ EpX,Y,Zq„PXPY ZφpXq b ψpY q b ωpZq

` 2EpX,Y,Zq„PXPY PZφpXq b ψpY q b ωpZq

“ EXY ZφpXq b ψpY q b ωpZq ´ EXYEZφpXq b ψpY q b ωpZq

´ EXZEY φpXq b ψpY q b ωpZq ´ EXEY ZφpXq b ψpY q b ωpZq

` 2EXEYEZφpXq b ψpY q b ωpZq

The squared norm }∆LP }
2
φbψbω is calculated by taking the inner product x∆LP,∆LP y.

This can therefore be expressed in terms of expectations of

xφpXq, φpX 1
qyxψpY q, ψpY 1qyxωpZq, ωpZ 1qy
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with respect to different factorisations of the joint.

Note that without knowing the distribution PXY Z , the we cannot calculate the

squared norm. Given the observations D, we can empirically estimate each of the

µP with an appropriate average over points in feature space. We can then use these

empirical estimates to get an empirical estimate of the squared norm }∆LP }
2
φbψbω.

The empirical estimates we use are:

µ̂PXY Z “
1

n

ÿ

i

φpXiq b ψpYiq b ωpZiq

µ̂PXY PZ “
1

n2

ÿ

ij

φpXiq b ψpYiq b ωpZjq

µ̂PXZPY “
1

n2

ÿ

ij

φpXiq b ψpYjq b ωpZiq

µ̂PXPY Z “
1

n2

ÿ

ij

φpXiq b ψpYjq b ωpZjq

µ̂PXPY PZ “
1

n3

ÿ

ijk

φpXiq b ψpYjq b ωpZkq

Observe that the inner products between any two of these empirical mean em-

beddings can be expressed in terms of the Gram matrices. For example,
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xµ̂PXY Z , µ̂PXY PZy “ x
1

n

ÿ

i

φpXiq b ψpYiq b ωpZiq,
1

n2

ÿ

jk

φpXjq b ψpYjq b ωpZkqy

“
1

n3

ÿ

ijk

xφpXiq b ψpYiq b ωpZiq, φpXjq b ψpYjq b ωpZkqy

“
1

n3

ÿ

ijk

xφpXiq, φpXjqyxψpYiq, ψpYjqyxωpZiq, ωpZkqy

“
1

n3

ÿ

ijk

KijLijMik

In this manner we can express }∆LP }
2
φbψbω as a sum of 15 separate terms3, each

written in terms of the Gram matrices.

Remark. To summarise what we have done thus far: we have constructed a function

of the observed data (a test statistic) which estimates a quantity that, assuming that

one of the variables X, Y or Z is independent of the other two, is zero.

Therefore, if our test statistic is ‘large’ then we can conclude that none of the

variables are independent of the others; that is to say that the joint distribution

PXY Z does not factorise.

To determine whether our test statistic is ‘large’, we need to compare its value to

the distribution of the statistic under the null distribution. As with HSIC, we use a

permutation bootstrap method to simulate samples under the null hypothesis.

Recall that the null hypothesis, H0, is that PXY Z factorises in some way. Since

there are three ways in which this can happen (namely PXY Z “ PXY PZ ,PXZPY or

PXPY Z, noting that the case PXY Z “ PXPY PZ is subsumed by each of these), we

must test the three sub-hypotheses separately. If we reject all of the sub-hypotheses,

then we reject the whole null hypothesis H0. Otherwise, we fail to reject the null. In

this case, we cannot conclude anything about whether or not the joint factorises.

3There are
`

5
2

˘

“ 10 combinations inner products of different terms, and 5 inner products of
each term with itself.
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To test each sub-hypothesis, we must estimate the corresponding null distribution.

By symmetry, it suffices to explain how to estimate the distribution of the statistic

under the assumption that pX, Y q KK Z. Similarly to HSIC, we perform a permutation

bootstrap procedure to generate simulated samples. By applying a permutation π to

the indices of the Zi, we generate a bootstrapped sample for which the dependence

between pX, Y q and Z is broken:

D1 “ tpXi, Yi, Zπpiqq, i “ 1, . . . , nu

By generating many samples in this way, we can estimate any desired quantile

for the threshold value of the statistic required to reject the null hypothesis.

As a footnote, observe finally that in the event that PXY Z “ PXPY PZ , the popu-

lation Lancaster statistic will also be zero. Hence we can use this statistic to create

a test for total independence. We can simulate draws from the distribution of the

statistic under the assumption of total independence by permuting the indices of two

variables: for distinct permutations π and σ, let

D1 “ tpXi, Yπpiq, Zσpiqq, i “ 1, . . . , nu

We will not explore this further in this thesis.

2.4 Resampling and the Wild Bootstrap

In the descriptions of the procedures for both the HSIC and Lancaster statistical

tests above, recall that in order to simulate samples of the test statistic under the

null distribution, we permuted the indices of one of the variables. In the case that

our observations are not iid but are rather drawn from a process with some temporal

dependence, this procedure will fail to simulate samples from the correct distribu-

tion. Indeed, suppose we take a draw from such a process pXiq
n
i“1 and scramble the

indices to get a new, simulated draw pXπpiqq
n
i“1. The temporal dependence between

consecutive Xis will be broken and so the simulated draw will not have the same

statistical properties as the true sample.
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It follows that we were to try using the permutation methods with non-iid data,

we may incorrectly set the threshold value of the test statistic required to reject the

null hypothesis for any given specificity since we would in fact not be simulating

samples from the null distribution of the test statistic4.

Instead, we need a more sophisticated bootstrap resampling method. The Wild

Bootstrap [8] is a scheme that can be used to simulate samples under the null distri-

bution, provided that certain conditions are satisfied. These conditions fall into two

categories: first, conditions on the underlying process from which the observations

are drawn; second, conditions on the test statistic itself.

Before discussing the Wild Bootstrap itself, it is first necessary to provide back-

ground information to understand these conditions. In the following subsections, we

will first introduce some formal concepts relating to time series, then the concept of

a V-statistic, after which we will be well-equipped to discuss the Wild Bootstrap.

2.4.1 Timeseries

In this thesis we are concerned with extending the HSIC and Lancaster tests to

situations in which the iid assumption on the observations does not hold. We consider

time series, ie data drawn from a random process in which successive observations

are dependent on previous observations. There are various formalisations of this

‘memory’ or mixing. Here we consider the two which are relevant to this thesis. For

more information about mixing, see [21][22][23].

Definition 10. A process pXtqt is τ -mixing if τprq ÝÑ 0 as r ÝÑ 8, where

τprq “ sup
lPN

1

l
sup

rďi1ď...ďil

τpF0, pXi1 , . . . , Xilqq ÝÑ 0

where

τpM, Xq “ Epsup
gPΛ
|

ż

gptqPX|Mpdtq ´
ż

gptqPXpdtq|q

4This is explored further in Example 4 in the Experiments section
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Definition 11. A process pXtqt is β-mixing (also known as absolutely regular) if

βpmq ÝÑ 0 as m ÝÑ 8, where

βpmq “
1

2
sup
n

sup
I
ÿ

i“1

J
ÿ

j“1

|PpAi XBjq ´ PpAiqPpBjq|

where the second supremum is taken over all finite partitions tA1, . . . , AIu and

tB1, . . . , BJu of the sample space such that Ai P An1 and Bj P A8n`m and Acb “
σpXb, Xb`1, . . . , Xcq

The concept of β-mixing will be invoked when applying a central limit theorem

in the next section. We will also need the following lemma:

Lemma 2.1. Suppose that the process pXt, Yt, Ztqt is β-mixing. Then any ‘sub-

process’ is also β-mixing (for example pXt, Ytqt or pXtqt)

Proof: Let us consider pXt, Ytqt. Let us call βXY Zpmq the coefficients for the process

pXt, Yt, Ztqt, and βXY pmq the coefficients for the process pXt, Ytqt.

Observe that for A P σppXb, Ybq, . . . , pXc, Ycqq, it is the case that A ˆ Z P

σppXb, Yb, Zbq, . . . , pXc, Yc, Zcqq and PXY pAq “ PXY ZpAˆ Zq.
Thus

βXY pmq “
1

2
sup
n

sup
tAXYi u,tBXYj u

I
ÿ

i“1

J
ÿ

j“1

|PXY pAXYi XBXY
j q ´ PXY ZpAXYi qPXY ZpBXY

j q|

“
1

2
sup
n

sup
tAXYi u,tBXYj u

I
ÿ

i“1

J
ÿ

j“1

|PXY ZppAXYi ˆ Zq X pBXY
j ˆ Zqq

´ PXY ZpAXYi ˆ ZqPXY ZpBXY
j ˆ Zq|

ď
1

2
sup
n

sup
tAXY Zi u,tBXY Zj u

I
ÿ

i“1

J
ÿ

j“1

|PXY ZpAXY Zi XBXY Z
j q ´ PXY ZpAXY Zi qPXY ZpBXY Z

j q|

“ βXY Zpmq

Thus we have shown that βXY Zpmq ÝÑ 0 ùñ βXY pmq ÝÑ 0. That is, if
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pXt, Yt, Ztqt is β-mixing then so is pXt, Ytqt

A similar argument holds for any other sub-process. �

2.4.2 V-statistics (and U-statistics)

For an in-depth introduction to V- and U-statistics, see [24].

Suppose that X1, X2, . . . are drawn iid from a distribution P, and that θ “ θpPq
is a function of the distribution for which there is an unbiased estimator, where h is

a symmetric function of the observations [24]:

θpPq “ EXi„PrhpX1, . . . , Xmqs

We call h a core, and we call its number of arguments its degree. Given observa-

tions Sn “ tX1, X2, . . . , Xnu with n ě m, the corresponding U-statistic is denoted

U “ Uph,Snq “
1
`

n
m

˘

ÿ

c

hpXi1 , Xi2 , . . . , Ximq

where c runs over each of the
`

n
m

˘

choices of m distinct elements ti1, i2, . . . , imu

from t1, 2, . . . , nu

V-statistics are closely related. Instead of summing over distinct observations Xi,

we sum over all combinations of the observations of size m with replacement. That

is,

V “ V ph,Snq “
1

nm

n
ÿ

i1“1

n
ÿ

i2“1

. . .
n
ÿ

im“1

hpXi1 , Xi2 , . . . , Ximq

U is an unbiased estimator, and moreover it is the minimum variance unbiased

estimator for θ given the observations Sn [24].

V-statistics are not unbiased, though they asymptotically approach their U-

statistic counterparts, with convergence that is dependent on properties of the core

h.

In particular, we draw attention to the fact that both Uph,Snq and V ph,Snq
converge to the expectation of the core h as n ÝÑ 8.
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We say that nV ph,Snq is a normalised V-statistic. In this thesis we will restrict

ourselves to considering V-statistics of degree two, that is h “ hpX1, X2q. We say

that such a core is degenerate if, for any x1 and for X2 „ P, EX2rhpx1, X2qs “ 0. If

a V-statistic has a degenerate core, we say that it is a degenerate V-statistic.

Note that if V ph,Snq is degenerate, then V ÝÑ EX1,X2rhpX1, X2qs “ 0 as n ÝÑ

8. It can be shown that a normalised V-statistic with a degenerate core converges

to a random variable [24].

Observe that if EX1,X2rhpX1, X2qs ‰ 0, then nV ph,Snq ÝÑ 8 as n ÝÑ 8.

Relevant to the above two statements is the fact that many kernel test statistics

can be viewed as normalised V-statistics which, under the null hypothesis, are de-

generate. If under the alternative hypothesis the test statistic diverges, then the test

is consistent.

The main result of this thesis is to show that, under the null hypothesis, they are

asymptotically equal to degenerate V-statistics.

2.4.3 The Wild Bootstrap

We are now equipped to discuss the Wild Bootstrap. Recall that the problem we

face with using time series for HSIC and Lancaster is that the permutation methods

to resample from the null distribution of the test statistics fails. The Wild Bootstrap

provides a method to sample from the correct null distribution.

Suppose we have a test statistic that is a normalised V-statistic nV with core h

of degree two, and suppose further that [8][10]:

(1) Conditions on the observations: Our observations Dn “ pStqnt“1 are drawn from

a strictly stationary, τ -dependent process with
ř8

r“1 r
2
a

τprq ă 8

(2) Conditions on the test statistic:

(i) h is a bounded kernel on S, where each Si takes value in S

(ii) h is degenerate as a core.

(iii) h is Lipschitz continuous.
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Our normalised V-statistic can be written

nV ph,Dnq “
1

n

ÿ

ij

hpSi, Sjq

We define the following two bootstrapped statistics [10]:

nVb1ph,Dnq :“
1

n

ÿ

ij

Wi,nWj,nhpSi, Sjq

nVb2ph,Dnq :“
1

n

ÿ

ij

W̃i,nW̃j,nhpSi, Sjq

where pWt,nq1ďtďn is known as the auxiliary wild bootstrap process and W̃t,n “

Wt,n ´
1
n

ř

iWi,n. We suppose that this process satisfies the following assumption

[10]:

(3) Conditions on bootstrap process : pWt,nq1ďtďn is a row-wise strictly stationary

triangular aray independent of all St such that EWt,n “ 0 and supn E|W 2`σ
t,n | ă 8

for some σ ą 0. The autocovariance of the process is given by covpWs,n,Wt,nq “

ρp|s´t|{lnq for some function ρ, such that limuÝÑ0 ρpuq “ 1 and
řn´1
r“1 ρp|r|{lnq “

Oplnq. The sequence plnq is taken such that ln “ opnq and limnÝÑ8ln “ 8.

The variables Wt,n are τ -weakly dependent with coefficients τprq ď Cζ
r
ln for

r “ 1, ..., n, ζ P p0, 1q and C ă 8

A simple example of a process satisfying these properties is given by [10][8]:

Wt,n “ e´1{lnWt´1,n `
a

1´ e´2{lnεt

where W0,n and ε1, . . . , εn are independent standard normal random variables.

[8] demonstrates the following result.

Theorem 2.3 (Leucht). Assume that conditions (1), (2) and (3) above hold. Then

nV, nVb1 and nVb2 converge to the same distribution. In particular,
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nV, nVb1, nVb2
d
ÝÑ Z :“

ÿ

k

λkZ
2
k

where pZkqk is a sequence of centred, jointly normal random variables with covpZj, Zkq “
ř8

r“´8 covpΦjpX0q,ΦkpXrqq, and pλkqk and pΦkqk are the sequences of non-zero eigen-

values and the corresponding eigenfunctions of Erhpx,X0qΦpX0qs “ λΦpxq

The particular distribution to which the test statistic and the bootstrapped statis-

tics converge is not particularly important. The important thing about this theorem

is that firstly, the test statistic does converge to some random variable, and that

secondly we can simulate samples from this distribution using the bootstrapped

statistics. Thus, provided that our observations satisfy (1) and that under the null

hypothesis our test statistic satisfies (2), we now have a method to estimate the null

distribution of our test statistic.

In this thesis we are primarily concerned with condition (2) above: the aim

is essentially to show that the test statistics for HSIC and Lancaster satisfy this.

However, before we continue it is worth briefly considering conditions (1) and (3) as

they suggest further directions for research.

When can we say with confidence that observations have indeed been drawn from

a process satisfying (1)?

As stated in the explanation of (3), it is relatively simple to write down a process

that satisfies (3). However, there will exist many other processes that one could

consider - indeed, even in the one written down, the choice of ln is open. As mentioned

in [8], in a similar method by Shao [9], the parameter choice of ln was not found to

be very important. Further investigation into this or of other choices of bootstrap

processes would be interesting, though in a different direction to the nature of the

work done in this thesis.

2.5 Summary

• HSIC is a statistical test for detecting dependence between two random vari-

ables.
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• Lancaster is a statistical test for detecting dependence between three random

variables. If we reject the null hypothesis, we conclude that there is no factori-

sation of the joint; if we do not reject the null hypothesis, we cannot conclude

anything.

• When the observed data are drawn iid, it is possible to resample from the

null distributions for both HSIC and Lancaster using permutation resampling.

When the observed data are not iid, this method is not valid.

• The Wild Bootstrap is a method that enables simulated samples of a test

statistic to be drawn under certain conditions. These are:

(i) The observed data must be drawn from a τ -mixing process

(ii) The test statistic must be a V-statistic with a core that is a degenerate,

Lipschitz continuous kernel

The objective of the following section is to show that, under their null hypotheses,

Lancaster and HSIC satisfy condition (ii) above.
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3 Main theoretical result

In this section, a result is proved that implies the Wild Bootstrap can be applied

to the Lancaster test statistic. This is the major new theoretical contribution of

this work. Furthermore, this proof can be adapted to give a simpler proof that the

Wild Bootstrap can be applied to HSIC. This is not new knowledge, however the

previous proof given in [3] was longer and relied on more advanced theory of U- and

V- statistics, including the Hoeffding decomposition [24]. The reader should note

that although the new proof given here is shorter, some of the complexity of the

argument is simply deferred to the proof of a Hilbert space Central Limit Theorem

for time series [25].

The result which will be proved is that, under their respective null hypotheses,

the normalised HSIC and Lancaster statistics are asymptotically V-statistics with

cores that are degenerate kernels.

The layout of this section is as follows. First, notation will be set up. Second, the

result will be proved for HSIC. Third, the result will be proved for Lancaster. The

proof ideas are essentially the same for the two statistics; the main difference is that

the proof for Lancaster involves considering the asymptotic properties of many more

terms than HSIC and is for this reason significantly longer, though not particularly

more conceptually involved.

3.1 Notation

Let k be a kernel with canonical feature map φ. Given observations Xi, i “

1, 2, . . . n let K be the gram matrix such that Kij “ kpXi, Xjq “ xφpXiq, φpXjqy.

Let µ̃X “
1
n

řn
i“1 φpXiq and let K̃ij “ xφpXiq ´ µ̃X , φpXjq ´ µ̃Xy. We call K̃ an

empirically centred gram matrix.

Let µX “ EXφpXq and let K̄ij “ xφpXiq ´ µX , φpXjq ´ µXy. We call K̄ an

population centred gram matrix.

Note that we cannot in general explicitly represent the feature mapped observa-

tions, and even when we can it may not be desirable to do so. We are, however,

able to write the empirically centred gram matrix K̃ just in terms of values of the
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original matrix K, and the population centred gram matrix K̄ in terms of K and

expectations of the kernel k. Indeed, by simply expanding the sum:

K̃ij “ xφpXiq ´ µ̃X , φpXjq ´ µ̃Xy

“ xφpXiq ´
1

n

ÿ

k

φpXkq, φpXjq ´
1

n

ÿ

l

φpXlqy

“ xφpXiq, φpXjqy ´
1

n

ÿ

k

xφpXkq, φpXjqy ´
1

n

ÿ

l

xφpXiq, φpXlqy `
1

n2

ÿ

k

ÿ

l

xφpXkq, φpXlqy

“ Kij ´
1

n

ÿ

k

Kkj ´
1

n

ÿ

l

Kil `
1

n2

ÿ

kl

Kkl

For notational ease, we here introduce the following notational convention. For

any matrix A, define

Ai` “
ÿ

j

Aij

A`j “
ÿ

i

Aij

A`` “
ÿ

ij

Aij

If additionally A is symmetric, we write

pA`qij “ A`j “ Aj`

Hence we can write
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K̃ij “ Kij ´
1

n
K`j ´

1

n
Ki` `

1

n2
K``

Observe that this gives a method to convert an empirically-uncentred gram matrix

into a centred one. For each entry, subtract the corresponding row and column

averages and add the whole matrix average.

Remark. The average value of any row or column of an empirically centred gram

matrix is zero

We can expand the population centred K̄ in a similar fashion, expressing it in

terms of expectations of the original kernel function k. In the following, X and X 1

are independent copies of the original random variable.

K̄ij “ xφpXiq ´ µX , φpXjq ´ µXy

“ xφpXiq ´ EXφpXq, φpXjq ´ EX 1φpX 1
qy

“ xφpXiq, φpXjqy ´ EXxφpXq, φpXjqy ´ EX 1xφpXiq, φpX
1
qy ` EXEX 1xφpXq, φpX 1

qy

“ kpXi, Xjq ´ EXkpX,Xjq ´ EX 1kpXi, X
1
q ` EXEX 1kpX,X 1

q

Similarly, we define the population centred kernel k̄ similar to the above.

k̄pXi, Xjq “ kpXi, Xjq ´ EXkpX,Xjq ´ EX 1kpXi, X
1
q ` EXEX 1kpX,X 1

q

We define the population centred feature map φ̄pXq :“ φpXq ´ µX . Note that

since k̄ corresponds to an inner product between points mapped under the feature

map φ̄, k̄ is indeed a valid kernel.

Remark. k̄ is a degenerate kernel. Indeed, observe also that for any x,
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EX˚ k̄px,X˚
q “ EX˚kpx,X˚

q ´ EXEX˚kpX,X˚
q ´ EX 1kpx,X 1

q ` EXEX 1kpX,X 1
q

“ 0

We denote by ˝ the Hadamard product, such that for any two matrices K and L

of equal dimension, pK ˝ Lqij “ KijLij.

Finally, throughout this thesis we will use at most 3 random variables and their

associated feature maps and gram matrices. The random variables will always be

referred to as X, Y and Z. The associated kernels are denoted k, l and m respectively.

The associated gram matrices are denoted K,L and M respectively. The associated

feature maps are denoted φ, ψ and ω respectively.

3.2 HSIC

Recall that given samples Xi, Yi, i “ 1, . . . , n, kernels k on X and l on Y and associ-

ated gram matrices K and L, the biased statistic for HSIC is defined by

HSICb “
1

n2

ÿ

ij

KijLij ´
2

n3

ÿ

ijr

KijLjr `
1

n4

ÿ

ijrs

KijLrs

“
1

n2
pK ˝ Lq`` ´

2

n3
pKLq`` `

1

n4
K``L``

In this section it will be shown that under the null hypothesis that X and Y are

independent, the normalised statistic for HSIC is asymptotically a degenerate V-

statistic. This degenerate V-statistic can then have the Wild Bootstrap applied to
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it to resample under the null hypothesis. We will first show that

nHSICb “
1

n
pK̄ ˝ L̄q`` ´

2

n2
pK̄L̄q`` `

1

n3
K̄``L̄`` (:)

then show that the latter two terms in the above equation tend to 0 as n ÝÑ 8.

Finally we will show that 1
n
pK̄ ˝ L̄q`` is a normalised degenerate V-statistic.

Claim 3.1. Let α and β be fixed elements of the Hilbert Spaces in which φpXq and

ψpY q take value respectively. Define φ1pXq “ φpXq ´ α and ψ1pY q “ ψpY q ´ β.

1

n2
pK̃ ˝ L̃q`` “

1

n2
pK 1

˝ L1q`` ´
2

n3
pK 1L1q`` `

1

n4
K 1
``L

1
``

where K 1
ij “ xφ

1pXiq, φ
1pXjqy and L1ij “ xψ

1pYiq, ψ
1pYjqy.

In particular, taking α “ µX and β “ µY , observe that

1

n2
pK̃ ˝ L̃q`` “

1

n2
pK̄ ˝ L̄q`` ´

2

n3
pK̄L̄q`` `

1

n4
K̄``L̄``

And taking α “ 0 and β “ 0,

1

n2
pK̃ ˝ L̃q`` “ HSICb

and hence p:q is true.

Proof: Given feature maps φ and ψ and observations D “ tXi, Yi, i “ 1, . . . , nu define

T pφ, ψ,Dq “ 1

n2

ÿ

ij

xφpXiq ´
1

n

ÿ

k

φpXkq, φpXjq ´
1

n

ÿ

k

φpXkqy

ˆ xψpYiq ´
1

n

ÿ

k

ψpYkq, ψpYjq ´
1

n

ÿ

k

ψpYkqy
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Note that by definition of K̃ and L̃,

T pφ, ψ,Dq “ 1

n2
pK̃ ˝ L̃q``

By Claim 6.1 in the Appendix,

T pφ, ψ,Dq “ 1

n2
pK ˝ Lq`` ´

2

n3
pKLq`` `

1

n2
K``L`` (˚)

Next, observe that

φ1pXiq ´
1

n

ÿ

k

φ1pXkq “ φpXiq ´ α ´
1

n

ÿ

k

tφpXkq ´ αu

“ φpXiq ´
1

n

ÿ

k

φpXkq

A similar result holds for ψ1, hence

T pφ1, ψ1,Dq “ 1

n2
pK̃ ˝ L̃q``

But by (˚), we also have that

T pφ1, ψ1,Dq “ 1

n2
pK 1

˝ L1q`` ´
2

n3
pK 1L1q`` `

1

n2
K 1
``L

1
``

Putting the two equalities together, we see that the claim is true.

�

We can now write

nHSICb “
1

n
pK̃ ˝ L̃q`` “

1

n
pK̄ ˝ L̄q`` ´

2

n2
pK̄L̄q`` `

1

n3
K̄``L̄``

It remains to show the following three things.

Claim 3.2. Under the null hypothesis that PXY “ PXPY ,

(i) 1
n3 K̄``L̄`` ÝÑ 0
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(ii) 1
n2 pK̄L̄q`` ÝÑ 0

(iii) 1
n
pK̄ ˝ L̄q`` is a degenerate normalised V-statistic

Having proved this, it is then clear that nHSICb is asymptotically equal to a

degenerate normalised V-statistic.

To prove these claims, let us first set up some more notation.

First, recall that we denote the population centered feature maps φ̄ “ φ ´ µX

and ψ̄ “ ψ ´ µY . Note that the gram matrices K̄ and L̄ represent inner products

of the data with respect to φ̄ and ψ̄. In a similar fashion, write µ̄X “ µ̃X ´ µX and

µ̄Y “ µ̃Y ´ µY

Next, define the population centred empirical covariance function

C̄XY “
1

n

ÿ

i

φ̄pXiq b ψ̄pYiq

This is an empirical estimator for the true population centred covariance function

CXY “ EXY rφ̄pXq b ψ̄pY qs “ µPXY ´ µPX b µPY

Lemma 3.1. Assume that pXi, Yiqi is β-mixing with coefficients βXY pmq satisfying
ř8

m“1pβXY pmqq
δ

2`δ for some δ ą 0.

Then

}C̄XY ´ CXY } “ Op
1
?
n
q

}µ̃X ´ µX} “ Op
1
?
n
q

}µ̃Y ´ µY } “ Op
1
?
n
q

Proof: We exploit Theorem 1.1 from [25]. Using the language of this paper, φ̄pXiq b ψ̄pYiq

is a 1-approximating functional of pXi, Yiqi (this follows straightforwardly from the
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definition of 1-approximating functionals given since φ̄pXiqb ψ̄pYiq “ pφ̄b ψ̄qpXi, Yiq

is a function of pXi, Yiq).

Since our kernels are bounded, DC : }φ̄pXiq b ψ̄pYiq} ă C and so

E}φ̄pX1q b ψ̄pY1q}
2`δ

ă C2`δ
ă 8 @δ ą 0

Thus condition (1) is satisfied.

We can take fm “ φ̄pX0q b ψ̄pY0q @m and so acheive am “ 0 @m, thus condition

(2) is satisfied.

By assumption on the time series, condition (3) is satisfied.

Thus, by Theorem 1.1 in [25]

?
npC̄XY ´ CXY q

nÝÑ8
„ N

where N is a Hilbert space valued Gaussian random variable. Thus

}C̄XY ´ CXY } “ Op
1
?
n
q

Note that a similar arguments hold to prove that conditions (1) and (2) are

satisfied by the sub-processes pXiqi and pYiqi. By Lemma 2.1, satisfaction of condition

(3) by pXi, Yiqi implies that any subprocess also satisfies condition (3). It thus follows

that }µ̃X ´ µX} “ Op 1?
n
q and }µ̃Y ´ µY } “ Op 1?

n
q �

Under the null hypothesis, PXY “ PXPY and thus

CXY “ EXY rφ̄pXq b ψ̄pY qs

“ EXEY rφ̄pXq b ψ̄pY qs

“ pEX φ̄pXqq b pEY ψ̄pY qq

“ 0
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And therefore, noting also that µ̃X ´ µX “ µ̄X and µ̃Y ´ µY “ µ̄Y we have that

}C̄XY } “ Op
1
?
n
q

}µ̄X} “ Op
1
?
n
q

}µ̄Y } “ Op
1
?
n
q

Now we can prove the claims.

Proof: piq

1

n3
K̄``L̄`` “

1

n3

ÿ

i,j

xφ̄pXiq, φ̄pXjqy
ÿ

k,l

xψ̄pYkq, ψ̄pYlqy

“ nx
1

n

ÿ

i

φ̄pXiq,
1

n

ÿ

j

φ̄pXjqyx
1

n

ÿ

k

ψ̄pYkq,
1

n

ÿ

l

ψ̄pYlqy

“ nxµ̄X , µ̄Xyxµ̄Y , µ̄Y y

“ n}µ̄X}
2
}µ̄Y }

2

“ nOp
1

n
qOp

1

n
q

“ Op
1

n
q ÝÑ 0

�
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Proof: piiq

1

n2
pK̄L̄q`` “

1

n2

ÿ

ijk

xφ̄pXiq, φ̄pXjqyxψ̄pYjq, ψ̄pYkqy

“
1

n2

ÿ

ijk

xφ̄pXjq b ψ̄pYjq, φ̄pXiq b ψ̄pYkqy

“ nx
1

n

ÿ

j

rφ̄pXjq b ψ̄pYjqs, r
1

n

ÿ

i

φ̄pXiqs b r
1

n

ÿ

k

ψ̄pYkqsy

“ nxC̄XY , µ̄X b µ̄Y y

“ Op
1
?
n
q

�

Proof: piiiq

1

n
pK̄ ˝ L̄q`` “

1

n

ÿ

ij

xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYjqy

Letting Si “ pXi, Yiq, observe that this is a normalised V-statistic with core

hpSi, Sjq “ xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYjqy

Under the null hypothesis the joint factorises as PXY “ PXPY . The expectation

operator EXY therefore factorises as

EXY “ EXEY

Thus

ESjhpsi, Sjq “ EXjYjxφ̄pxiq, φ̄pXjqyxψ̄pyiq, ψ̄pYjqy

“ xφ̄pxiq,EXj φ̄pXjqyxψ̄pyiq,EYj ψ̄pYjqy

“ xφ̄pxiq, 0yxψ̄pyiq, 0y “ 0
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To conclude, we have proven that the normalised test statistic for HSIC asymp-

totically approaches a degenerate normalised V-statistic, and therefore satisfies the

conditions required to use the wild bootstrap.

3.3 Lancaster

The notation used in this section will be the same as for HSIC, except that now we

have three variables rather than two. The new variable will be denoted Z, its kernel

function m, its associated feature map ω and its Gram matrix M . Use of over-head

bars and tildes represent centering with respect to expectations and sample averages,

as with HSIC.

As shown in [4], the Lancaster test statistic can be expressed as:

}∆LP̂ }
2
“

1

n2
pK̃ ˝ L̃ ˝ M̃q``

Our aim, as before with HSIC, is to show that, after normalisation, this is asymp-

totically equal to a normalised V-statistic with a degenerate core. We will follow a

similar approach - first expand it to express it as a sum of terms, then show that all

but one of the terms goes to 0 and that the remaining term is a normalised V-statistic

with a degenerate core.

Claim 3.3. Let α, β and γ be fixed elements of the Hilbert Spaces in which φpXq,

ψpY q and ωpZq take value respectively. Define φ1pXq “ φpXq´α, ψ1pY q “ ψpY q´β

and ω1pZq “ ωpZq ´ γ. Then
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}∆LP̂ }
2
“

1

n2
pK 1

˝ L1 ˝M 1
q`` ´

2

n3
ppK 1

˝ L1qM 1
q`` ´

2

n3
ppK 1

˝M 1
qL1q``

´
2

n3
ppM 1

˝ L1qK 1
q`` `

1

n4
pK 1

˝ L1q``M
1
`` `

1

n4
pK 1

˝M 1
q``L

1
``

`
1

n4
pL1 ˝M 1

q``K
1
`` `

2

n4
pM 1K 1L1q`` `

2

n4
pK 1L1M 1

q``

`
2

n4
pK 1M 1L1q`` `

4

n4
trpK 1

` ˝ L
1
` ˝M

1
`q ´

4

n5
pK 1L1q``M

1
``

´
4

n5
pK 1M 1

q``L
1
`` ´

4

n5
pL1M 1

q``K
1
`` `

4

n6
K 1
``L

1
``M

1
``

where K 1
ij “ xφ

1pXiq, φ
1pXjqy, L

1
ij “ xψ

1pYiq, ψ
1pYjqy and M 1

ij “ xω
1pZiq, ω

1pZjqy.

In particular, taking α “ µX , β “ µY and γ “ µZ, we can replace K 1, L1 and M 1

by K̄, L̄ and M̄ respectively in the above equation

Proof: The proof of this claim mirrors that of Claim 3.1.

Given feature maps φ, ψ and ω, and observations D “ tXi, Yi, Zi, i “ 1, . . . , nu

define

T pφ, ψ, ω,Dq “ 1

n2

ÿ

i,j

xφpXiq ´
1

n

ÿ

k

φpXkq, φpXjq ´
1

n

ÿ

k

φpXkqy

ˆ xψpYiq ´
1

n

ÿ

k

ψpYkq, ψpYjq ´
1

n

ÿ

k

ψpYkqy

ˆ xωpZiq ´
1

n

ÿ

k

ωpZkq, ωpZjq ´
1

n

ÿ

k

ωpZkqy

By definition of K̃, L̃ and M̃ , observe that

T pφ, ψ, ω,Dq “ 1

n2
pK̃ ˝ L̃ ˝ M̃q`` “ }∆LP̂ }

2

By expanding the inner products in the definition of T , it is straightforward (but
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very tedious) algebra to show that

T pφ, ψ, ω,Dq “ 1

n2
pK ˝ L ˝Mq`` ´

2

n3
ppK ˝ LqMq`` ´

2

n3
ppK ˝MqLq``

´
2

n3
ppM ˝ LqKq`` `

1

n4
pK ˝ Lq``M`` `

1

n4
pK ˝Mq``L``

`
1

n4
pL ˝Mq``K`` `

2

n4
pMKLq`` `

2

n4
pKLMq``

`
2

n4
pKMLq`` `

4

n4
trpK` ˝ L` ˝M`q ´

4

n5
pKLq``M``

´
4

n5
pKMq``L`` ´

4

n5
pLMq``K`` `

4

n6
K``L``M``

(for a proof see Claim 6.2 in the appendix.)

Next, observe that

φ1pXiq ´
1

n

ÿ

k

φ1pXkq “ φpXiq ´ α ´
1

n

ÿ

k

tφpXkq ´ αu

“ φpXiq ´
1

n

ÿ

k

φpXkq

Similar results hold for φ1 and ω1, hence

T pφ1, ψ1, ω1,Dq “ 1

n2
pK̃ ˝ L̃ ˝ M̃q`` “ }∆LP̂ }

2

But we also have that
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T pφ1, ψ1, ω1,Dq “ 1

n2
pK 1

˝ L1 ˝M 1
q`` ´

2

n3
ppK 1

˝ L1qM 1
q`` ´

2

n3
ppK 1

˝M 1
qL1q``

´
2

n3
ppM 1

˝ L1qK 1
q`` `

1

n4
pK 1

˝ L1q``M
1
`` `

1

n4
pK 1

˝M 1
q``L

1
``

`
1

n4
pL1 ˝M 1

q``K
1
`` `

2

n4
pM 1K 1L1q`` `

2

n4
pK 1L1M 1

q``

`
2

n4
pK 1M 1L1q`` `

4

n4
trpK 1

` ˝ L
1
` ˝M

1
`q ´

4

n5
pK 1L1q``M

1
``

´
4

n5
pK 1M 1

q``L
1
`` ´

4

n5
pL1M 1

q``K
1
`` `

4

n6
K 1
``L

1
``M

1
``

And hence the result follows. �

Observe that up to symmetries K Ø LØM , there are 7 different terms here.

Before we go further, we need to introduce yet more notation. Similar to C̄XY

and CXY in the HSIC section, we define

C̄XY Z “
1

n

ÿ

i

φ̄pXiq b ψ̄pYiq b ω̄pZiq

CXY Z “ EXY Zrφ̄pXq b ψ̄pY q b ω̄pZqs

By permuting the ordering of φ̄pXq, ψ̄pY q and ω̄pZq we can similarly define

CZXY , CXZY etc.

It is possible to express each of the 7 symmetrically-distinct terms as inner prod-

ucts of covariance operators and mean embeddings:

Claim 3.4. Let u, v and w be random variables with population centred Gram ma-
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trices Ū , V̄ and W̄ respectively. Then

piq
1

n
pŪ ˝ V̄ ˝ W̄ q`` “ nxC̄uvw, C̄uvwy

piiq
1

n2
ppŪ ˝ V̄ qW̄ q`` “ nxC̄uvw, C̄uv b µ̄wy

piiiq
1

n3
pŪ ˝ V̄ q``W̄`` “ nxC̄uv b µ̄w, C̄uv b µ̄wy

pivq
1

n3
pŪ V̄ W̄ q`` “ nxC̄uv b µ̄w, µ̄u b C̄vwy

pvq
1

n3
trpŪ` ˝ V̄` ˝ W̄`q “ nxC̄uvw, µ̄u b µ̄v b µ̄wy

pviq
1

n3
pŪ V̄ q``W̄`` “ nxC̄uv b µ̄w, µ̄u b µ̄v b µ̄wy

pviiq
1

n3
Ū``V̄``W̄`` “ nxµ̄u b µ̄v b µ̄w, µ̄u b µ̄v b µ̄wy

For proof of Claim 3.4, see page 76 in the appendix.

It follows that we can write the normalised Lancaster statistic as
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n}∆LP̂ }
2
“ nxC̄XY Z , C̄XY Zy

´ 2nxC̄XY Z , C̄XY b µ̄Zy

´ 2nxC̄XZY , C̄XZ b µ̄Y y

´ 2nxC̄Y ZX , C̄Y Z b µ̄Xy

` nxC̄XY b µ̄Z , C̄XY b µ̄Zy

` nxC̄XZ b µ̄Y , C̄XZ b µ̄Y y

` nxC̄Y Z b µ̄X , C̄Y Z b µ̄Xy

` 2nxµ̄Z b C̄XY , C̄ZX b µ̄Y y

` 2nxµ̄X b C̄Y Z , C̄XY b µ̄Zy

` 2nxµ̄X b C̄ZY , C̄XZ b µ̄Y y

` 4nxC̄XY Z , µ̄X b µ̄Y b µ̄Zy

´ 4nxC̄XY b µ̄Z , µ̄X b µ̄Y b µ̄Zy

´ 4nxC̃XZ b µ̃Y , µ̃X b µ̃Z b µ̃Y y

´ 4nxC̃Y Z b µ̃X , µ̃Y b µ̃Z b µ̃Xy

` 4nxµ̃X b µ̃Y b µ̃Z , µ̃X b µ̃Y b µ̃Zy

Let us take a moment to remember our aim.

Remark. We need to show that under the null hypothesis, the normalised Lan-

caster test statistic asymptotically approaches a normalised degenerate V-statistic.

Recall that the Lancaster test has a composite null hypothesis: X KK pY, Zq _ Y KK

pX,Zq _ Z KK pX, Y q. We therefore need to demonstrate the required result under

each component of the null hypothesis separately. Since the Lancaster statistic is

symmetric in X Ø Y Ø Z, we can without loss of generality consider only the

case Z KK pX, Y q; equivalently PXY Z “ PXY PZ. Observe further that if any two

components are satisfied then there is total independence, ie PXY Z “ PXPY PZ
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Theorem 3.1. Suppose that PXY Z “ PXY PZ. Then

n}∆LP̂ }
2
ÝÑ

1

n
ppK̄ ˝ L̄q ˝ M̄q``

and this is a normalised degenerate V-statistic.

Proof: PXY Z “ PXY PZ implies that the expectation operator factorises similarly as

EXY Z “ EXYEZ . Hence

CXY Z “ EXY Zrφ̄pXq b ψ̄pY q b ω̄pZqs

“ EXYEZrφ̄pXq b ψ̄pY q b ω̄pZqs

“ rEXY φ̄pXq b ψ̄pY qs b rEZω̄pZqs

“ rEXY φ̄pXq b ψ̄pY qs b 0

“ 0

Similarly, CXZY “ CY ZX “ 0

By marginalising with respect to X or Y , we obtain PY Z “ PY PZ and PXZ “
PXPZ respectively. The expectation operators again factorise similarly, and therefore

CXZ “ EXZrφ̄pXq b ω̄pZqs

“ EXEZrφ̄pXq b ω̄pZqs

“ rEX φ̄pXqs b rEZω̄pZqs

“ rEX φ̄pXqs b 0

“ 0

and
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CY Z “ EY Zrψ̄pY q b ω̄pZqs

“ EYEZrψ̄pY q b ω̄pZqs

“ rEY ψ̄pY qs b rEZω̄pZqs

“ rEY ψ̄pY qs b 0

“ 0

Lemma 3.2. Assume that pXi, Yi, Ziqi is β-mixing with coefficients βXY Zpmq satis-

fying
ř8

m“1pβXY Zpmqq
δ

2`δ for some δ ą 0. Then

}C̄XY Z} “ Op
1
?
n
q

}C̄XZY } “ Op
1
?
n
q

}C̄Y ZX} “ Op
1
?
n
q

}C̄XZ} “ Op
1
?
n
q

}C̄Y Z} “ Op
1
?
n
q

}µ̄X} “ Op
1
?
n
q

}µ̄Y } “ Op
1
?
n
q

}µ̄Z} “ Op
1
?
n
q

Proof: The proof of this is exactly the same as the proof of Lemma 3.1, replacing

pXi, Yiq and φ̄pXiq b ψ̄pYiq with pXi, Yi, Ziq and φ̄pXiq b ψ̄pYiq b ω̄pZiq respectively.
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Observe that }CXY } ‰ 0, and so }C̄XY } ÝÑ const

We will now show that almost all of the terms in the expression for n}∆LP̂ }
2

tend to 0 in the limit n ÝÑ 8.

Claim 3.5.

n}∆LP̂ }
2
ÝÑ nxC̄XY Z , C̄XY Zy ´ 2nxC̄XY Z , C̄XY b µ̄Zy ` nxC̄XY b µ̄Z , C̄XY b µ̄Zy

Proof: The proof of this is very simple, but requires familiarity with how to manip-

ulate inner products of tensor products. We demonstrate here only that the term

nxµ̄X b C̄Y Z , C̄XY b µ̄Zy goes to zero; the proofs for the other terms are essentially

the same.

nxµ̄X b C̄Y Z , C̄XY b µ̄Zy ď n}µ̄X b C̄Y Z}}C̄XY b µ̄Z}

“ n
b

xµ̄X b C̄Y Z , µ̄X b C̄Y Zy
b

xC̄XY b µ̄Z , C̄XY b µ̄Zy

“ n
b

xµ̄X , µ̄XyxC̄Y Z , C̄Y Zy
b

xC̄XY , C̄XY yxµ̄Z , µ̄Zy

“ n}µ̄X}}C̄Y Z}}C̄XY }}µ̄Z}

“ nOp
1
?
n
qOp

1
?
n
qOp1qOp

1
?
n
q

“ Op
1
?
n
q

All of the other terms are bounded in the same way. We first use Cauchy-

Schwartz, then the property that }a b b} “ }a}}b}, then we use the asymptotic

bounds on the previous page.

All of the other terms (except those in the statement of the claim) go to 0 as

n ÝÑ 8. �

Remark. The remaining terms would be found to be Op1q if subjected to the analysis

above.
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Rewriting in terms of Gram matrices, we have thus shown that

n}∆LP̂ }
2
ÝÑ

1

n
ppK̄ ˝ L̄q ˝ M̄q`` ´

2

n2
ppK̄ ˝ L̄qM̄q`` `

1

n3
pK̄ ˝ L̄q``M̄``

We will use this to prove the final result

Claim 3.6.

n}∆LP̂ }
2
ÝÑ

1

n
ppK̄ ˝ L̄q ˝ M̄q``

and moreover this is a normalised degenerate V-statistic

Proof:

Treating pX, Y q to be a single variable with a kernel given by the feature map

φ̄b ψ̄, observe that

1

n
ppK̄ ˝ L̄q ˝ M̄q`` ´

2

n2
ppK̄ ˝ L̄qM̄q`` `

1

n3
pK̄ ˝ L̄q``M̄``

can be thought of as HSIC between pX, Y q and Z. Observe that with this kernel,

the expectation of pX, Y q in feature space is

EXY rφ̄pXq b ψ̄pY qs “ CXY

We can therefore recentre the matrix pK̄ ˝ L̄qij “ xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYjqy “

xφ̄pXiq b ψ̄pYiq, φ̄pXjq b ψ̄pYjqy with respect to the expectation of its entries to get

pK̄ ˝ L̄qij “ xφ̄pXiq b ψ̄pYiq ´ CXY , φ̄pXjq b ψ̄pYjq ´ CXY y

Recall that in Claim 3.1, we proved that HSIC is invariant to recentering the

Gram matrices. Using this and Claim 3.2, we obtain
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1

n
ppK̄ ˝ L̄q ˝ M̄q`` ´

2

n2
ppK̄ ˝ L̄qM̄q`` `

1

n3
pK̄ ˝ L̄q``M̄``

“
1

n
ppK̄ ˝ L̄q ˝ M̄q`` ´

2

n2
ppK̄ ˝ L̄qM̄q`` `

1

n3
pK̄ ˝ L̄q

``
M̄``

ÝÑ
1

n
ppK̄ ˝ L̄q ˝ M̄q``

It remains to show that 1
n
ppK̄ ˝ L̄q ˝M̄q`` is a normalised degenerate V-statistic.

Let Si “ pXi, Yi, Ziq.

1

n
ppK̄ ˝ L̄q ˝ M̄q`` “

1

n

ÿ

ij

xφ̄pXiq b ψ̄pYiq ´ CXY , φ̄pXjq b ψ̄pYjq ´ CXY yxω̄pZiq, ω̄pZjqy

This is a normalised V-statistic with core

hpSi, Sjq “ xφ̄pXiq b ψ̄pYiq ´ CXY , φ̄pXjq b ψ̄pYjq ´ CXY yxω̄pZiq, ω̄pZjqy

To show that the core is degenerate, we fix any value si and take expectations

with respect to Sj:

ESjhpsi, Sjq “ EXjYjZjxφ̄pxiq b ψ̄pxiq ´ CXY , φ̄pXjq b ψ̄pYjq ´ CXY yxω̄pziq, ω̄pZjqy

“ EXjYjEZjxφ̄pxiq b ψ̄pxiq ´ CXY , φ̄pXjq b ψ̄pYjq ´ CXY yxω̄pziq, ω̄pZjqy

“ xφ̄pxiq b ψ̄pxiq ´ CXY ,EXjYj rφ̄pXjq b ψ̄pYjqs ´ CXY yxω̄pziq,EZj ω̄pZjqy

“ xφ̄pxiq b ψ̄pxiq ´ CXY , 0yxω̄pziq, 0y

“ 0
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To conclude, we have shown that if PXY Z “ PXY PZ , then

n}∆LP̂ }
2
ÝÑ

1

n
ppK̄ ˝ L̄q ˝ M̄q``

and moreover this is a normalised degenerate V-statistic.

Now observe that if, further, it holds that PXY Z “ PXPY PZ , all of the above

analysis still holds but additionally we have that CXY “ 0 and hence pK̄ ˝ L̄q is

already centred in expectation. Thus

n}∆LP̂ }
2
ÝÑ

1

n
pK̄ ˝ L̄ ˝ M̄q``

and this is a normalised degenerate V-statistic.

�
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4 Experiments

This section is laid out as follows. We first describe two HSIC-based tests for de-

tecting joint dependence of three random variables - similar to the Lancaster test,

rejection of the null in these tests tells us that the joint distribution PXY Z does not

factorise. If we fail to reject the null, they are non-informative.

We then discuss briefly multiple testing corrections. We describe an improvement

to the Holm-Bonferroni correction [26] proposed in [4] for the Lancaster test.

We next compare the performance of the Lancaster test to the two HSIC-based

tests described above on three artificial datasets. The first two datasets are ones for

which the joint distribution does not factorise. In the third, the distribution does

factorise - we use this to see how the specificities of the tests compare. We then show

that the Wild Bootstrap is indeed necessary when in the non-iid case, by comparing

its performance in controlling Type I errors to that of the permutation bootstrap in

a fourth artificial dataset.

Finally, we perform each of the tests on real forex data.

4.1 Using HSIC for three-way independence testing

We introduce briefly two different ways of using HSIC to test for dependence between

three variables X, Y and Z. We will compare them with Lancaster in the remainder

of this section.

4.1.1 The ‘Pairwise HSIC’ test

Observe that the following statements hold by marginalising out X, Y or Z from the

left hand equations as appropriate.
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Figure 2: If any two edges are present in a graphical model on three nodes then the
graph is connected, and thus the joint distribution PXY Z does not factorise.

PXY Z “ PXY PZ ùñ rPXZ “ PXPZs ^ rPY Z “ PY PZs

PXY Z “ PXZPY ùñ rPXY “ PXPY s ^ rPY Z “ PY PZs

PXY Z “ PXPY Z ùñ rPXY “ PXPY s ^ rPXZ “ PXPZs

The contrapositives of these statements are, in order

rPXZ ‰ PXPZs _ rPY Z ‰ PY PZs ùñ PXY Z ‰ PXY PZ
rPXY ‰ PXPY s _ rPY Z ‰ PY PZs ùñ PXY Z ‰ PXZPY
rPXY ‰ PXPY s _ rPXZ ‰ PXPZs ùñ PXY Z ‰ PXPY Z

Thus, if the left hand sides of all of the above statements hold, we can conclude

that PXY Z does not factorise. All three statements will hold provided that any two

pairs of variables are dependent. This can be graphically interpreted by Figure 2,

which shows that if any two of the three possible edges in a graph on three nodes

are present, the graph is connected (and thus the joint probability distribution on

the three nodes does not factorise).

This gives us a statistical test for testing joint dependence. We test each of the

three hypotheses:
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HXY : PXY “ PXPY
HXZ : PXZ “ PXPZ
HY Z : PY Z “ PY PZ

using HSIC. If we reject any two of them, we conclude that the distribution does

not factorise. In the remainder of this section, we will call this the Pairwise HSIC

test.

4.1.2 The ‘3-way HSIC’ test

Recall that in the Lancaster test, our null hypothesis H0 is a composite hypothesis.

Let us denote by HX the hypothesis that X KK pY, Zq, and define similarly HY and

HZ . Then

H0 “ HX _HY _HZ

and so we reject H0 if and only if we reject each of HX , HY and HZ . Instead

of using the Lancaster statistic to test each of these sub-hypotheses, we could use

HSIC:

We can consider pY, Zq to be a single random variable. We can thus test HX (ie

whether pY, Zq is independent of X or not) using HSIC. We can similarly test HY

and HZ . If we reject all three of the sub-hypotheses, we reject H0.

We will refer to this test as the 3-way HSIC test throughout the remainder of

this section.

4.2 Multiple testing correction

When performing multiple hypothesis tests, we must take into consideration the fact

that the probability of falsely rejecting one of the hypotheses grows as we increase
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the number of tests. In both the Lancaster and HSIC-based tests, our null hypothesis

consists of multiple sub-hypotheses. In order to control the overall Type-I error rate,

we must consider carefully the threshold p-values we use for each of the sub-tests.

4.2.1 Holm-Bonferroni

Given a family of multiple hypotheses H1,H2, . . . ,Hm, the Holm-Bonferroni method

[26] is a way to control the family-wise error rate. This is the probability that one

or more of the hypotheses are falsely rejected. To ensure a family-wise error rate of

at most α, we perform the following procedure.

1. Let p1, . . . , pm be the p-values corresponding to each hypothesis.

2. Sort the p-values from lowest to highest. Write them as pp1q, . . . , ppmq and let

Hp1q, . . . ,Hpmq be the corresponding hypotheses.

3. Let k be the minimal index such that ppkq ą
α

m`1´k

4. Reject the hypothesesHp1q, . . . ,Hpk´1q and do not reject the hypothesesHpkq, . . . ,Hpmq.
If k “ 1, we reject all of the hypotheses.

4.2.2 Multiple correction for Pairwise HSIC test

Observe that we are testing three hypotheses. If we reject any two of the hypotheses,

we conclude that the joint distribution PXY Z does not factorise. How can we bound

the Type I error rate of our overall test? Let us consider the following example.

Example (See Figure 3). Suppose that PXY Z “ PXY PZ, and that PXY does not

factorise. First note that we should reject HXY but not reject the null hypothesis

overall. Suppose however that we falsely reject one of HY Z or HXZ. In this case the

overall result would be to incorrectly conclude that PXY Z must not factorise.

Therefore, if our aim is to bound the probability of a Type I error overall by α,

then we should apply the Holm-Bonferroni method to account for multiple testing

error, since the family-wise error rate (ie the probability of incorrectly rejecting at
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X

Z

Y

Figure 3: If we correctly detect the edge XY, but falsely detect edges XZ or YZ, then
we would incorrectly conclude that the joint distribution does not factorise.

least one of the hypotheses) is what we need to bound, as illustrated by the above

example.

4.2.3 Multiple correction for Lancaster and 3-way HSIC test

Recall that in the Lancaster and 3-way HSIC tests, our null hypothesis H0 is a

composite hypothesis:

H0 “ HX _HY _HZ

where HX the hypothesis that X KK pY, Zq, and HY and HZ are defined similarly.

We perform statistical tests for each of HX , HY and HZ , and we reject H0 if and

only if we reject each of its components.

We wish to control the Type I error of the composite test - that is, we wish to

control the probability of falsely rejecting H0. Denote by A˚ the event that we reject

H˚. Then

PpA0q “ PpAX ^ AY ^ AZq ď mintPpAXq,PpAY q,PpAZqu

Whether or not there exists a better bound than this that holds in absolute

generality is not clear, because the events AX , AY and AZ are not independent. If

H0 is true, then at least one of HX , HY and HZ must be true. Therefore, if we use a

threshold p-value of α in each statistical test separately, then WLOG assuming that

HX is true, we see that

PpA0q ď mintPpAXq,PpAY q,PpAZqu ď PpAXq “ α
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To conclude: we can bound the Type I error rate by α by setting the Type I error

rate for each constituent test individually to be α. We refer to this correction as the

‘naive’ correction throughout the remainder of this thesis.

In [4], it is suggested that one use the Holm-Bonferroni method to control the

Type I error rate. This results in a worse test power than the ‘naive’ correction,

since it provides overly conservative bounds on the Type I error rate. Indeed, for

a rejection of the null to occur using the Holm-Bonferroni correction, the sorted p-

values of the hypotheses would have to be lower than rα
3
, α

2
, αs, compared to only

rα, α, αs using the method described above.

See Example 3 below for an empirical comparison of the Type I error rates of the

two methods on artificial data for which the ground truth is that H0 is true.

4.3 Results

4.3.1 Example 1: Artificial data

Artificial data were generated from autoregressive processes X, Y and Z according

to:

Xt “
1

2
Xt´1 ` εt

Yt “
1

2
Yt´1 ` ηt

Zt “
1

2
Zt´1 ` dpXt ` Ytq ` ζt

where X0, Y0, Z0, εt, ηt and ζt are iid N p0, 1q random variables and d P R, called

the dependence coefficient, determines the extent to which the process pZtqt is de-

pendent on pXt, Ytqt.

Data were generated according to this definition with varying values for the de-

pendence coefficient. For each value of the dependence coefficient, 500 datasets were

generated, each consisting of 2000 consecutive observations of the variables. We
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ran the Wild Bootstrap with 250 bootstrapping procedures and we used a Gaussian

kernel with bandwidth parameter 1 on each of X, Y and Z.

In this example, the ground truth is that Z is dependent on both X and Y

separately, as well as on them both jointly (ie dependent on pX, Y q). The results

are presented in Figure 4. Observe that the HSIC-based test is able to detect the

dependence more easily than the Lancaster test when the interaction is weak, and

that when using the ‘naive’ correction, the Lancaster test has a higher test power

than when using the Holm-Bonferroni correction.
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Power of HSIC and Lancaster joint factorisation tests

Pairwise HSIC with Holm-Bonferroni
Lancaster with "Naive" correction
Lancaster with Holm-Bonferroni
3-way HSIC with "Naive" correction
3-way HSIC with Holm-Bonferroni

Figure 4: Performance of Lancaster and HSIC-based joint dependence tests on data
from Example 1. Observe that the HSIC-based tests outperform the Lancaster
tests, and that Lancaster with ‘naive’ correction performs better than with Holm-
Bonferroni.
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4.3.2 Example 2: Artificial data

Artificial data were generated from autoregressive processes X, Y and Z according

to:

Xt “
1

2
Xt´1 ` εt

Yt “
1

2
Yt´1 ` ηt

Zt “
1

2
Zt´1 ` d|θt|signpXtYtq ` ζt

where X0, Y0, Z0, εt, ηt, θt and ζt are iid N p0, 1q random variables and d P R,

called the dependence coefficient, determines the extent to which the process pZtqt is

dependent on pXt, Ytqt.

Data were generated according to this definition with varying values for the de-

pendence coefficient. For each value of the dependence coefficient, 500 datasets were

generated, each consisting of 2000 consecutive observations of the variables. We

ran the Wild Bootstrap with 250 bootstrapping procedures and we used a Gaussian

kernel with bandwidth parameter 1 on each of X, Y and Z.

In contrast to the dataset in Example 1, Z is dependent on the process pX, Y q

but is independent of X and Y when considered separately. Indeed, observe that the

marginal distributions of X and Y are both normal distributions with mean 0, and

thus signpXtYtq is either ´1 or 1 with equal probability, conditioned upon neither or

exactly one of Xt or Yt.

The results are presented in Figure 5. Observe that Pairwise HSIC is unable to

correctly identify that the distribution does not factorise. This is because it only

looks at the variables pairwise, and so is unable to detect the three-way dependence

that Lancaster can detect.

3-way HSIC should in principle be able to detect the dependence, but when

the dependence coefficient is low the interactions between X and pY, Zq, as well as
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between Y and pX,Zq, may be very weak.

As before, Lancaster with the ‘naive’ correction outperforms Lancaster with

Holm-Bonferroni.
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Figure 5: Performance of Lancaster and HSIC-based joint dependence tests on data
from Example 2. Observe that the Pairwise HSIC does not detect any dependence
at all. In the range of dependence coefficients considered, 3-way HSIC appears to
be unable to detect dependence whereas Lancaster performs well. Note again that
Lancaster with ‘naive’ correction performs better than with Holm-Bonferroni.

4.3.3 Example 3: Artificial data

The purpose of this example is to understand how the tests behave when the null

hypothesis is true, and how well we can control the Type I error rates.
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Artificial data were generated from autoregressive processes X, Y and Z accord-

ing to:

Xt “
1

2
Xt´1 ` εt

Yt “
1

2
Yt´1 ` ηt

Zt “
1

2
Zt´1 `

1

2
Xt ` ζt

where X0, Y0, Z0, εt, ηt and ζt are iid N p0, 1q random variables. Observe that

pX,Zq KK Y , and so the null hypothesis is true.

4000 datasets were generated according to this definition, each consisting of 2000

consecutive observations of the variables. We ran the Wild Bootstrap with 250

bootstrapping procedures and we used a Gaussian kernel with bandwidth parameter

1 on each of X, Y and Z. For each test, the p-values were recorded. For any desired

Type I error rate α, the proportion of tests that would have resulted in a rejection

of the null could then be calculated. This is presented in Figure 6.

Ideally, we would have an empirical Type I error that is very close to, but bounded

by, α. In this case, we have a good understanding of the Type I error and therefore

can choose a threshold in an informed way to control the tradeoff between sensitivity

and specificity. It is ‘bad’ if the empirical Type I error is drastically less than the

desired level, as this means that the sensitivity of the test is lower than it would

otherwise be5.

Observe that for 3-way HSIC, the empirical Type I error rate is almost exactly

as desired. For Pairwise-HSIC, the empirical Type I error rate is slightly less than

the desired level. The Lancaster tests have a much lower empirical Type I error

than desired. Using the ‘naive’ correction gives a considerable improvement over

5It is ‘even worse’ if the empirical Type I error is not bounded by the desired level. In this case,
it is not possible to control the false positive rate! It is for this reason that the Wild Bootstrap is
needed, rather than using the permutation bootstrap that works in the iid case. See Example 4.
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the Holm-Bonferroni correction, though it is still significantly lower than the desired

error.

4.3.4 Example 4: Artificial data

The purpose of this example is to demonstrate that the Wild Bootstrap is actually

needed when resampling from the null distribution.

Artificial data generated from autoregressive processes X, Y and Z according to:

Xt “ aXt´1 ` εt

Yt “ aYt´1 ` ηt

Zt “ aZt´1 ` ζt

where X0, Y0, Z0, εt, ηt and ζt are iid N p0, 1q random variables and a, called the

dependence coefficient, determines how temporally dependent the processes are. Ob-

serve that each process is independent of the others and so the null hypothesis is

true.

We performed the Lancaster test using both the Wild Bootstrap and simple

permutation bootstrap (used in the iid case) methods to sample from the null dis-

tribution. We used a fixed desired false positive rate α “ 0.05 with sample of size

1000, with 500 experiments run for each value of a. Figure 7 shows the false positive

rates for these two methods for varying a. It shows that as the processes become

more dependent, the false positive rate for the permutation method becomes very

large, and is not bounded by the fixed α, whereas the false positive rate for the Wild

Bootstrap method is bounded by α.

4.3.5 Example 5: Forex data

We performed the tests on exchange rates CHF/USD, CHF/GBP and USD/CAD

from 01/01/1990 until 31/12/1999. We tried to answer two questions using this data:
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Figure 6: Performance of Lancaster and HSIC-based joint dependence tests on data
from Example 3. Here the null hypothesis is true, and we measure the empirical
Type I error rate as a function of the desired Type I error rate. Observe that 3-way
HSIC achieves the desired Type I error rate more or less exactly. Note that using
Holm-Bonferroni or the ‘naive’ correction seemingly makes no difference for 3-way
HSIC - indeed, the purple line is not visible as it is perfectly obscured by the green
line. Pairwise HSIC is also close to the desired error. Note that for Lancaster, using
the ‘naive’ rather than Holm-Bonferroni correction results in a Type I error rate that
is closer to the desired rate, thus implying that this correction gives a better test
power.

59



Dependence coefficient
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
yp

e 
I e

rr
or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
False positives - Wild Bootstrap vs Permutation

Lancaster with Wild Bootstrap
Lancaster with Permutation Bootstrap

Figure 7: Empirical Type I errors of the Lancaster test when using the Wild Boot-
strap and simple permutation bootstrap methods. Observe that when the depen-
dence coefficient is large, a very large false positive rate is obtained when using the
permutation bootstrap. This implies that the Wild Bootstrap is indeed actually
needed - the permutation bootstrap does not work in this example.
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(i) Are the exchange rates themselves dependent?

(ii) Are the fluctuations within each time series dependent?

We performed two different types of preprocessing before running the tests.

To answer (i), we took logarithms of each datum, then centred each time series

with respect to its mean and then scaled each time series to have unit variance. We

refer to these processed time series as the normalised time series. Figure 8 displays

the normalised time series. Observe that these time series do not appear to be

stationary, and so application of the Wild Bootstrap may not be valid.

To answer (ii), we first took logarithms of each datum. We then smoothened each

time series by taking a 5-day running average, and subtracted these from the original

time series. We then centred and scaled these ‘fluctuation time series’ to each have

zero mean and unit variance. Figure 9 shows the fluctuation time series after this

procedure.

For the output of the code when run on these datasets, see the appendix. For

the normalised data, both the HSIC-based tests and the Lancaster test (with both

‘naive’ and Holm-Bonferroni corrections) rejected the null hypothesis (ie the joint

distribution does not factorise). For the fluctuation data, the HSIC tests rejected

the null hypothesis, however Lancaster failed to reject the null hypothesis.

4.3.6 Example 6: Forex data

We performed the tests on exchange rates GBP/USD, USD/HRK and GBP/HRK

for 4534 working days days from 09/09/1996. We tried to answer the same questions

as in Example 5 and so processed the data in the same way. Figure 10 displays the

normalised time series. Figure 11 displays the fluctuation time series. Note that the

time series in Figure 10 do not appear to be stationary and so application of the

Wild Bootstrap may not be valid.

For the output of the code when run on these datasets, see the appendix. For

both sets of processed data, all of the tests reject the null hypothesis (ie they detect

that the distribution does not factorise and thus the variables are all dependent).
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Figure 8: Normalised time series for data in Example 5. Observe that these time
series do not appear to be stationary, and so application of the Wild Bootstrap may
not be valid.
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Figure 9: Fluctuation time series for data in Example 5.
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Figure 10: Normalised time series for data in Example 6. Observe that these time
series do not appear to be stationary, and so application of the Wild Bootstrap may
not be valid.
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Figure 11: Fluctuation time series for data in Example 6.
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4.4 Discussion of results

Let us note first that the Lancaster test can detect dependence in some circumstances

for which the HSIC-based tests fail to detect dependence, such as in Example 2. This

is an example of a situation in which Z is weakly dependent on X and Y separately,

but strongly dependent on the pair pX, Y q.

In cases for which the pairwise dependence is strong, it appears that the HSIC-

based tests have a better power than the Lancaster test, as demonstrated by Example

1.

There is a confounding factor here though - as demonstrated by Example 3, the

Type I error of the Lancaster test has a much cruder bound than those for Pairwise

HSIC and 3-way HSIC. It may be possible that the lower power of the Lancaster test

is due, at least in part, to the fact that we are setting our thresholds for the p-values

to be too low with the result that we fail to reject too many cases in which the null

hypothesis in fact does not hold.

Examples 1, 2 and 3 together serve to demonstrate that the ‘naive’ multiple

testing correction is better than the previously proposed Holm-Bonferroni correction

in [4]. This improvement should hold in the iid case considered in [4] too.

Looking at the real data analysed in Examples 5 and 6, we see that the Lancaster

test did not allow us to draw any conclusions beyond what we learned from the

HSIC-based tests, however it is possible that it may be useful beyond HSIC in other

circumstances. One ‘problem’ with financial data is that there are many confounding

factors, and so it is in general quite hard to find pairs of variables that are marginally

independent of one another (or weakly dependent) and yet (strongly) dependent via

a third - these are the situations in which the Lancaster test is particularly useful.

It is worth nothing that the Lancaster test performs well on the data in Example 6

- here there are good reasons to believe that there is a very strong 3-way dependence

between the three random variables under consideration, beyond the dependence

found between pairs of variables. Indeed, since the three variables cover all exchange

rates between three currencies, any two should determine the third (since trading,

for example, GBP ÝÑ USD ÝÑ HRK ÝÑ GBP should result in no net loss or gain,
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else there would be opportunity for arbitrage).

It should be noted that it is not clear whether the time series used in Examples

5 and 6 satisfy the conditions required of the Wild Bootstrap. ‘By eye’ inspection

suggests that stationarity does not hold in the normalised time series. Whether or

not the β- and τ -mixing conditions hold in either the normalised time series or the

fluctation timeseries is unclear.
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5 Conclusions and directions for further research

In this thesis we present a kernel statistical test of dependence between three station-

ary random processes that satisfy β- and τ -mixing assumptions. The null hypothesis

of this test is that the joint distribution PXY Z factorises in some way, so that rejection

of the null implies that PXY Z does not factorise. This uses the Lancaster interaction

as its test statistic, and uses the Wild Bootstrap to resample the statistic under the

null distribution.

In order to show that use of the Wild Bootstrap results in samples from the correct

null distribution, we prove that the normalised Lancaster statistic is a degenerate

V-statistic under the null hypothesis. This is the main contribution of this thesis.

The same proof idea is used to give a new proof that the Wild Bootstrap can be

used with HSIC when the observations are drawn from random processes satisfying

the same conditions as stated above.

When performing the Lancaster statistical test, we test multiple hypotheses and

so consider multiple testing corrections. A minor contribution of this thesis is to

show that the existing corrections used were more conservative than necessary, and

a new, better correction is provided resulting in a greater test power.

Comparing the performance of the Lancaster test with HSIC-based tests on ar-

tificial data shows that, when the three variables interact weakly when considered

pairwise, but strongly when considered all together, the Lancaster test outperforms

the HSIC-based tests. However, when strong pairwise interactions are present, the

HSIC-based tests considered are more able to identify joint dependence. An in-

teresting finding that may account for some of the relatively-better-power of the

HSIC-based tests was that even with the better multiple testing correction, the em-

pirical bound on the Type I errors was found to be very severe. Thus, some power of

the Lancaster test may be lost due to in practice having a more extreme test statistic

threshold than necessary for any given Type I error bound.

Moving forward, there are many questions that this research has raised. We list

some here.

• Recall that the statement of the theorem of the Wild Bootstrap lists three
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sets of conditions. They concern: (1) Conditions on the observations; (2)

Conditions on the test statistic; (3) Conditions on the bootstrapping process.

In this thesis we have proved that the Lancaster and HSIC test statistics satisfy

(2), but what about the other two conditions? How can we tell if observations

satisfy (1)? What happens if we choose a different bootstrap process satisfying

(3)?

• Recall that we use a Hilbert space Central Limit Theorem for random processes

in our proof. Currently we assume that they are β-mixing, in addition to the

τ -mixing already needed for the wild bootstrap. Is it possible to relax the

conditions on the processes?

• Experiment 3 shows that we are bounding the Type I error rate too severely,

possibly at the expense of test power. Can we better understand how to bound

the false positive rate?

• When we fail to reject the null hypothesis of the Lancaster test, we cannot con-

clude anything about the distribution. This is because the Lancaster statistic

can be zero even when the joint distribution does not factorise. Better under-

standing these ‘counterexamples’ and possibly even characterising them might

help us to create a consistent test of joint dependence on three variables.
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Table 2: V -statistic estimates of xxν, ν1yykbl in the two-variable case. Note that this table has

been copied exactly from [4], and is not the original work of the author of this thesis

νzν 1 PXY PXPY

PXY
1
n2 pK ˝ Lq``

1
n3 pKLq``

PXPY
1
n4K``L``

6 Appendix

6.1 Proofs

Claim 6.1. Using the same setup as in Claim 3.1,

T pφ, ψ,Dq “ 1
n2 pK ˝ Lq`` ´

2
n3 pKLq`` `

1
n2K``L``

There are two ways to prove this. The first relies on the Lancaster paper [4], and

is relatively short. The second is from direct manipulation of the definition of T and

is only straightforward, but extremely tedious, algebra.

Proof: (i) Using the results from Lancaster paper Noting first by definition of T , and

then by Section 4.1 in [4],

T pφ, ψ, ω,Dq “ 1

n2
pK̃ ˝ L̃q``

“ }P̂XY ´ P̂XP̂Y }
2
kbl

“ xP̂XY , P̂XY y ´ 2xP̂XY , P̂XP̂Y y ` xP̂XP̂Y , P̂XP̂Y y

Each of these inner products can be expressed in terms of the Gram matrices K

and L. Table 1 in [4], which has been exactly copied here as Table 2 for convenience,

gives us each of these expressions. Substituting yields the desired result.

�
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Proof: (ii) A direct proof

T pφ, ψ,Dq

“
1

n2

ÿ

ij

xφpXiq ´
1

n

ÿ

k

φpXkq, φpXjq ´
1

n

ÿ

k

φpXkqy

ˆ xψpYiq ´
1

n

ÿ

k

ψpYkq, ψpYjq ´
1

n

ÿ

k

ψpYkqy

“
1

n2

ÿ

ij

txφpXiq, φpXjqy ´
1

n

ÿ

k

xφpXiq, φpXkqy

´
1

n

ÿ

k

xφpXkq, φpXjqy `
1

n2

ÿ

kl

xφpXkq, φpXlqyu

ˆ txψpYiq, ψpYjqy ´
1

n

ÿ

k

xψpYiq, ψpYkqy ´
1

n

ÿ

k

xψpYkq, ψpYjqy `
1

n2

ÿ

kl

xψpYkq, ψpYlqyu

“
1

n2

ÿ

ij

tKij ´
1

n
Ki` ´

1

n
K`j `

1

n2
K``utLij ´

1

n
Li` ´

1

n
L`j `

1

n2
L``u

“
1

n2

ÿ

ij

tKijLij ´
1

n
KijLi` ´

1

n
KijL`j `

1

n2
KijL``

´
1

n
Ki`Lij `

1

n2
Ki`Li` `

1

n2
Ki`L`j ´

1

n3
Ki`L``

´
1

n
K`jLij `

1

n2
K`jLi` `

1

n2
K`jL`j ´

1

n3
K`jL``

`
1

n2
K``Lij ´

1

n3
K``Li` ´

1

n3
K``L`j `

1

n4
K``L``
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“
1

n2
t
ÿ

ij

KijLij ´
1

n

ÿ

i

Ki`Li` ´
1

n

ÿ

j

K`jL`j `
1

n2
K``L``

´
1

n

ÿ

i

Ki`Li` `
1

n

ÿ

i

Ki`Li``
1

n2
K``L`` ´

1

n2
K``L``

´
1

n

ÿ

j

K`jL`j`
1

n2
K``L```

1

n

ÿ

j

K`jL`j´
1

n2
K``L``

`
1

n2
K``L`` ´

1

n2
K``L`` ´

1

n2
K``L`` `

1

n2
K``L``u

“
1

n2
pK ˝ Lq`` ´

2

n3
pKLq`` `

1

n2
K``L``

where the last equality follows due to the coloured terms cancelling and the middle

two black terms being equal by symmetry of K and L. �

Claim 6.2. Using the same setup as in Claim 3.3,

T pφ, ψ, ω,Dq “ 1

n2
pK ˝ L ˝Mq`` ´

2

n3
ppK ˝ LqMq`` ´

2

n3
ppK ˝MqLq``

´
2

n3
ppM ˝ LqKq`` `

1

n4
pK ˝ Lq``M`` `

1

n4
pK ˝Mq``L``

`
1

n4
pL ˝Mq``K`` `

2

n4
pMKLq`` `

2

n4
pKLMq``

`
2

n4
pKMLq`` `

4

n4
trpK` ˝ L` ˝M`q ´

4

n5
pKLq``M``

´
4

n5
pKMq``L`` ´

4

n5
pLMq``K`` `

4

n6
K``L``M``

There are two ways to prove this. The first relies on the Lancaster paper [4], and

is relatively short. The second is from direct manipulation of the definition of T and

is only straightforward, but extremely tedious, algebra. The second proof is included

to demonstrate that the result can be derived from ‘first principles’, without the

need for advanced theory, though the author would recommend that the first proof

is a much better way of thinking about the problem.

Proof: (i) Using Lancaster interaction paper
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Noting first by definition of T , and then by Proposition 3 in [4],

T pφ, ψ, ω,Dq “ 1

n2
pK̃ ˝ L̃ ˝ M̃q``

“ }∆LP̂ }
2
kblbm

Next, expanding ∆LP̂ in terms of empirical embeddings of various factorisations

of the joint, as in equation p2q of [4] yields

}∆LP̂ }
2
kblbm “ }P̂XY Z ´ P̂XY P̂Z ´ P̂Y ZP̂X ´ P̂XZP̂Y ` 2P̂XP̂Y P̂Z}

2
kblbm

“ xP̂XY Z , P̂XY Zy ´ xP̂XY Z , P̂XY P̂Zy ´ xP̂XY Z , P̂Y ZP̂Xy

´ xP̂XY Z , P̂XZP̂Y y ` 2xP̂XY Z , P̂XP̂Y P̂Zy

´ xP̂XY P̂Z , P̂XY Zy ` xP̂XY P̂Z , P̂XY P̂Zy ` xP̂XY P̂Z , P̂Y ZP̂Xy

` xP̂XY P̂Z , P̂XZP̂Y y ´ 2xP̂XY P̂Z , P̂XP̂Y P̂Zy

´ xP̂Y ZP̂X , P̂XY Zy ` xP̂Y ZP̂X , P̂XY P̂Zy ` xP̂Y ZP̂X , P̂Y ZP̂Xy

` xP̂Y ZP̂X , P̂XZP̂Y y ´ 2xP̂Y ZP̂X , P̂XP̂Y P̂Zy

´ xP̂XZP̂Y , P̂XY Zy ` xP̂XZP̂Y , P̂XY P̂Zy ` xP̂XZP̂Y , P̂Y ZP̂Xy

` xP̂XZP̂Y , P̂XZP̂Y y ´ 2xP̂XZP̂Y , P̂XP̂Y P̂Zy

` 2xP̂XP̂Y P̂Z , P̂XY Zy ´ 2xP̂XP̂Y P̂Z , P̂XY P̂Zy ´ 2xP̂XP̂Y P̂Z , P̂Y ZP̂Xy

´ 2xP̂XP̂Y P̂Z , P̂XZP̂Y y ` 4xP̂XP̂Y P̂Z , P̂XP̂Y P̂Zy

Each of these inner products can be expressed in terms of the Gram matrices K, L

and M . Table 2 in [4], which has been exactly copied here as Table 3 for convenience,

gives us each of these expressions. Substituting yields the desired result.

�
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Table 3: V -statistic estimates of xxν, ν1yykblbm in the three-variable case. Note that this table

has been copied exactly from [4], and is not the original work of the author of this thesis

νzν1 nPXY Z n2PXY PZ n2PXZPY n2PY ZPX n3PXPY PZ

nPXY Z pK ˝ L ˝Mq`` ppK ˝ LqMq`` ppK ˝MqLq`` ppM ˝ LqKq`` trpK` ˝ L` ˝M`q

n2PXY PZ pK ˝ Lq``M`` pMKLq`` pKLMq`` pKLq``M``

n2PXZPY pK ˝Mq`` L`` pKMLq`` pKMq``L``

n2PY ZPX pL ˝Mq``K`` pLMq``K``

n3PXPY PZ K``L``M``

Proof: (ii) A direct proof (not recommended!)

T pφ, ψ, ω,Dq “ 1

n2

ÿ

i,j

xφpXiq ´
1

n

ÿ

k

φpXkq, φpXjq ´
1

n

ÿ

k

φpXkqy

ˆ xψpYiq ´
1

n

ÿ

k

ψpYkq, ψpYjq ´
1

n

ÿ

k

ψpYkqy

ˆ xωpZiq ´
1

n

ÿ

k

ωpZkq, ωpZjq ´
1

n

ÿ

k

ωpZkqy

“
1

n2

ÿ

ij

txφpXiq, φpXjqy ´
1

n

ÿ

k

xφpXiq, φpXkqy

´
1

n

ÿ

k

xφpXkq, φpXjqy `
1

n2

ÿ

kl

xφpXkq, φpXlqyu

ˆ txψpYiq, ψpYjqy ´
1

n

ÿ

k

xψpYiq, ψpYkqy

´
1

n

ÿ

k

xψpYkq, ψpYjqy `
1

n2

ÿ

kl

xψpYkq, ψpYlqyu

ˆ txωpZiq, ωpZjqy ´
1

n

ÿ

k

xωpZiq, ωpZkqy

´
1

n

ÿ

k

xωpZkq, ωpZjqy `
1

n2

ÿ

kl

xωpZkq, ωpZlqyu

74



“
1

n2

ÿ

ij

tKij ´
1

n
Ki` ´

1

n
K`j `

1

n2
K``u

ˆ tLij ´
1

n
Li` ´

1

n
L`j `

1

n2
L``u

ˆ tMij ´
1

n
Mi` ´

1

n
M`j `

1

n2
M``u

“
1

n2

ÿ

ij

tKijLijMij ´
1

n
KijLijMi` ´

1

n
KijLijM`j `

1

n2
KijLijM``

´
1

n
KijLi`Mij `

1

n2
KijLi`Mi` `

1

n2
KijLi`M`j ´

1

n3
KijLi`M``

´
1

n
KijL`jMij `

1

n2
KijL`jMi` `

1

n2
KijL`jM`j ´

1

n3
KijL`jM``

`
1

n2
KijL``Mij ´

1

n3
KijL``Mi` ´

1

n3
KijL``M`j `

1

n4
KijL``M``

´
1

n
Ki`LijMij `

1

n2
Ki`LijMi` `

1

n2
Ki`LijM`j ´

1

n3
Ki`LijM``

`
1

n2
Ki`Li`Mij ´

1

n3
Ki`Li`Mi` ´

1

n3
Ki`Li`M`j `

1

n4
Ki`Li`M``

`
1

n2
Ki`L`jMij ´

1

n3
Ki`L`jMi` ´

1

n3
Ki`L`jM`j `

1

n4
Ki`L`jM``

´
1

n3
Ki`L``Mij `

1

n4
Ki`L``Mi` `

1

n4
Ki`L``M`j ´

1

n5
Ki`L``M``

´
1

n
K`jLijMij `

1

n2
K`jLijMi` `

1

n2
K`jLijM`j ´

1

n3
K`jLijM``

`
1

n2
K`jLi`Mij ´

1

n3
K`jLi`Mi` ´

1

n3
K`jLi`M`j `

1

n4
K`jLi`M``

`
1

n2
K`jL`jMij ´

1

n3
K`jL`jMi` ´

1

n3
K`jL`jM`j `

1

n4
K`jL`jM``

´
1

n3
K`jL``Mij `

1

n4
K`jL``Mi` `

1

n4
K`jL``M`j ´

1

n5
K`jL``M``

`
1

n2
K``LijMij ´

1

n3
K``LijMi` ´

1

n3
K``LijM`j `

1

n4
K``LijM``

´
1

n3
K``Li`Mij `

1

n4
K``Li`Mi` `

1

n4
K``Li`M`j ´

1

n5
K``Li`M``

´
1

n3
K``L`jMij `

1

n4
K``L`jMi` `

1

n4
K``L`jM`j ´

1

n5
K``L`jM``

`
1

n4
K``L``Mij ´

1

n5
K``L``Mi` ´

1

n5
K``L``M`j `

1

n6
K``L``M``
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Summing over the indices (taking care that if an index is not present in a term,

summing over this multiplies the term by a factor of n) and cancelling equal terms

yields the required result.

�

Proof of Claim 3.4

Proof: To illustrate the symmetry, we used u, v and w and U, V and W in the

statement of the claim. However, for notational ease we will prove the claim here

using X, Y, Z etc.

piq
1

n
pK ˝ L ˝Mq`` “

1

n

ÿ

ij

xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYjqyxω̄pZiq, ω̄pZjqy

“
1

n

ÿ

ij

xφ̄pXiq b ψ̄pYiq b ω̄pZiq, φ̄pXjq b ψ̄pYjq b ω̄pZjqy

“ nx
1

n

ÿ

i

φ̄pXiq b ψ̄pYiq b ω̄pZiq,
1

n

ÿ

j

φ̄pXjq b ψ̄pYjq b ω̄pZjqy

“ nxC̄XY Z , C̄XY Zy
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piiq
1

n2
ppK ˝ LqMq`` “

1

n2

ÿ

ijk

xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYjqyxω̄pZjq, ω̄pZkqy

“
1

n2

ÿ

ijk

xφ̄pXjq b ψ̄pYjq b ω̄pZjq, φ̄pXiq b ψ̄pYiq b ω̄pZkqy

“ nx
1

n

ÿ

j

φ̄pXjq b ψ̄pYjq b ω̄pZjq,

r
1

n

ÿ

i

φ̄pXiq b ψ̄pYiqs b r
1

n

ÿ

k

ω̄pZkqsy

“ nxC̄XY Z , C̄XY b µ̄Zy

piiiq
1

n3
pK ˝ Lq``M`` “

1

n3

ÿ

ijkl

xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYjqyxω̄pZkq, ω̄pZlqy

“
1

n3

ÿ

ijkl

xφ̄pXiq b ψ̄pYjq b ω̄pZkq, φ̄pXjq b ψ̄pYjq b ω̄pZlqy

“ nxr
1

n

ÿ

i

φ̄pXiq b ψ̄pYiqs b r
1

n

ÿ

k

ω̄pZkqs,

r
1

n

ÿ

j

φ̄pXjq b ψ̄pYjqs b r
1

n

ÿ

l

ω̄pZlqsy

“ nxC̄XY b µ̄Z , C̄XY b µ̄Zy
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pivq
1

n3
pKLMq`` “

1

n3

ÿ

ijkl

xφ̄pXiq, φ̄pXjqyxψ̄pYjq, ψ̄pYkqyxω̄pZkq, ω̄pZlqy

“
1

n3

ÿ

ijkl

xφ̄pXjq b ψ̄pYjq b ω̄pZlq, φ̄pXiq b ψ̄pYkq b ω̄pZkqy

“ nxr
1

n

ÿ

j

φ̄pXjq b ψ̄pYjqs b r
1

n

ÿ

l

ω̄pZlqs,

r
1

n

ÿ

i

φ̄pXiqs b r
1

n

ÿ

k

ψ̄pYkq b ω̄pZkqsy

“ nxC̄XY b µ̄Z , µ̄X b C̄Y Zy

pvq
1

n3
trpK` ˝ L` ˝M`q`` “

1

n3

ÿ

ijkl

xφ̄pXiq, φ̄pXjqyxψ̄pYiq, ψ̄pYkqyxω̄pZiq, ω̄pZlqy

“
1

n3

ÿ

ijkl

xφ̄pXiq b ψ̄pYiq b ω̄pZiq, φ̄pXjq b ψ̄pYkq b ω̄pZlqy

“ nxr
1

n

ÿ

i

φ̄pXiq b ψ̄pYiq b ω̄pZiqs,

r
1

n

ÿ

j

φ̄pXjqs b r
1

n

ÿ

k

ψ̄pYkqs b r
1

n

ÿ

l

ω̄pZlqsy

“ nxC̄XYX , µ̄X b µ̄Y b µ̄Zy
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pviq
1

n4
pKLq``M`` “

1

n4

ÿ

ijklp

xφ̄pXiq, φ̄pXjqyxψ̄pYjq, ψ̄pYkqyxω̄pZlq, ω̄pZpqy

“
1

n4

ÿ

ijklp

xφ̄pXjq b ψ̄pYjq b ω̄pZlq, φ̄pXiq b ψ̄pYkq b ω̄pZpqy

“ nxr
1

n

ÿ

j

φ̄pXjq b ψ̄pYjqs b r
1

n

ÿ

l

ω̄pZlqs,

r
1

n

ÿ

i

φ̄pXiqs b r
1

n

ÿ

k

ψ̄pYkqs b r
1

n

ÿ

p

ω̄pZpqsy

“ nxC̄XY b µ̄Z , µ̄X b µ̄Y b µ̄Zy

pviiq
1

n5
K``L``M`` “

1

n5

ÿ

ijklpq

xφ̄pXiq, φ̄pXjqyxψ̄pYkq, ψ̄pYlqyxω̄pZpq, ω̄pZqqy

“
1

n5

ÿ

ijklpq

xφ̄pXiq b ψ̄pYkq b ω̄pZpq, φ̄pXjq b ψ̄pYlq b ω̄pZqqy

“ nxr
1

n

ÿ

i

φ̄pXiqs b r
1

n

ÿ

k

ψ̄pYkqs b r
1

n

ÿ

p

ω̄pZpqs,

r
1

n

ÿ

j

φ̄pXjqs b r
1

n

ÿ

l

ψ̄pYlqs b r
1

n

ÿ

q

ω̄pZqqsy

“ nxµ̄X b µ̄Y b µ̄Z , µ̄X b µ̄Y b µ̄Zy

�
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6.2 Code output from Example 5

6.2.1 Output for normalised timeseries

Lancaster test results

----------------------

x not independent of (y,z) [the distribution does not factorise]

p-value: 0

y not independent of (x,z) [the distribution does not factorise]

p-value: 0

z not independent of (x,y) [the distribution does not factorise]

p-value: 0

total independence rejected [the distribution does not factorise]

p-value: 0

Pairwise HSIC test results

----------------------

x and y are dependent [the distribution does not factorise]

p-value: 0

x and z are dependent [the distribution does not factorise]

p-value: 0

y and z are dependent [the distribution does not factorise]

p-value: 0

Threeway HSIC test results

----------------------

(X,Y) and Z are dependent [the distribution does not factorise]

p-value: 0

(X,Z) and Y are dependent [the distribution does not factorise]

p-value: 0
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(Y,Z) and X are dependent [the distribution does not factorise]

p-value: 0

Lancaster Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

Lancaster: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

Performing pairwise HSIC joint factorisation test

with Holm-Bonferroni multiple correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

6.2.2 Output for fluctuation timeseries

Lancaster test results

----------------------

x independence of (y,z) cannot be rejected

p-value: 0.168
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y independence of (x,z) cannot be rejected

p-value: 0.142

z independence of (x,y) cannot be rejected

p-value: 0.128

total independence cannot be rejected

p-value: 0.168

Pairwise HSIC test results

----------------------

x and y are dependent [the distribution does not factorise]

p-value: 0

x and z are dependent [the distribution does not factorise]

p-value: 0.018

y and z are dependent [the distribution does not factorise]

p-value: 0

Threeway HSIC test results

----------------------

(X,Y) and Z are dependent [the distribution does not factorise]

p-value: 0

(X,Z) and Y are dependent [the distribution does not factorise]

p-value: 0

(Y,Z) and X are dependent [the distribution does not factorise]

p-value: 0

Lancaster Performing Holm-Bonferroni correction

----------------------

Cannot reject null hypothesis: joint distribution may or may not factorise
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Lancaster: Performing "Naive" (but better) correction

----------------------

Cannot reject null hypothesis: joint distribution may or may not factorise

Performing pairwise HSIC joint factorisation test

with Holm-Bonferroni multiple correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise
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6.3 Code output from Example 6

6.3.1 Output for normalised timeseries

Lancaster test results

----------------------

x not independent of (y,z) [the distribution does not factorise]

p-value: 0

y not independent of (x,z) [the distribution does not factorise]

p-value: 0

z not independent of (x,y) [the distribution does not factorise]

p-value: 0

total independence rejected [the distribution does not factorise]

p-value: 0

Pairwise HSIC test results

----------------------

x and y are dependent [the distribution does not factorise]

p-value: 0

x and z are dependent [the distribution does not factorise]

p-value: 0

y and z are dependent [the distribution does not factorise]

p-value: 0

Threeway HSIC test results

----------------------

(X,Y) and Z are dependent [the distribution does not factorise]

p-value: 0

(X,Z) and Y are dependent [the distribution does not factorise]
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p-value: 0

(Y,Z) and X are dependent [the distribution does not factorise]

p-value: 0

Lancaster Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

Lancaster: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

Performing pairwise HSIC joint factorisation test

with Holm-Bonferroni multiple correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

6.3.2 Output for fluctuation timeseries

Lancaster test results

----------------------

x not independent of (y,z) [the distribution does not factorise]
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p-value: 0

y not independent of (x,z) [the distribution does not factorise]

p-value: 0

z not independent of (x,y) [the distribution does not factorise]

p-value: 0

total independence rejected [the distribution does not factorise]

p-value: 0

Pairwise HSIC test results

----------------------

x and y are dependent [the distribution does not factorise]

p-value: 0

x and z are dependent [the distribution does not factorise]

p-value: 0

y and z are dependent [the distribution does not factorise]

p-value: 0

Threeway HSIC test results

----------------------

(X,Y) and Z are dependent [the distribution does not factorise]

p-value: 0

(X,Z) and Y are dependent [the distribution does not factorise]

p-value: 0

(Y,Z) and X are dependent [the distribution does not factorise]

p-value: 0

Lancaster Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise
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Lancaster: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

Performing pairwise HSIC joint factorisation test

with Holm-Bonferroni multiple correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing Holm-Bonferroni correction

----------------------

Reject null hypothesis: Joint distribution does not factorise

3 way HSIC: Performing "Naive" (but better) correction

----------------------

Reject null hypothesis: Joint distribution does not factorise
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