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This talk is based mostly on the following:

I Arthur Gretton’s course on RKHS theory: http://www.gatsby.
ucl.ac.uk/~gretton/coursefiles/rkhscourse.html

I Bishop’s Pattern Recognition and Machine Learning
I Stulp and Sigaud, Many regression algorithms, one unified model:

A review

3 of 33

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html


Ordinary Least Squares (OLS) Linear Regression

Problem:

I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X = Rp
and yi ∈ Y = R

I Want to infer a function f : Rp −→ R that explains* D.
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Ordinary Least Squares (OLS) Linear Regression

Problem:

I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X = Rp
and yi ∈ Y = R

I Want to infer a function f : Rp −→ R that explains* D.

An approach:
I Assume f is linear: f(x) = xᵀβ for some β
I Choose β to minimise the sum of squared errors.

Writing X = (x1,x2, . . . ,xN )ᵀ and Y = (y1, . . . , yN )ᵀ, we wish to
minimise

L(β) = (Y −Xβ)ᵀ(Y −Xβ)
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OLS (cont)

L(β) = (Y −Xβ)ᵀ(Y −Xβ)

= Y ᵀY − 2βᵀXᵀY + βᵀXᵀXβ

=⇒ dL

dβ
= −2XᵀY + 2XᵀXβ

So dL
dβ = 0 =⇒ β = (XᵀX)−1XᵀY if (XᵀX)−1 exists.
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OLS (cont)

Two problems.

1. What if XᵀX is not invertible?
2. What if y is not well approximated by a linear function of x?
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OLS (cont)

Two problems.

1. What if XᵀX is not invertible?
2. What if y is not well approximated by a linear function of x?

Solutions:

1. Eigenvalues of XᵀX are always ≥ 0
=⇒ XᵀX + λI invertible for λ > 0... why?

2. Can replace x with φ(x), where φ : X −→ Rp.
Write Φ := φ(X)

6 of 33



Ridge Regression in Feature Space

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X ,
yi ∈ Y = R and feature map φ : X −→ Rp

I Want to infer a function f : Rp −→ R so that f ◦ φ explains* D.
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Ridge Regression in Feature Space

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X ,
yi ∈ Y = R and feature map φ : X −→ Rp

I Want to infer a function f : Rp −→ R so that f ◦ φ explains* D.

An approach:
I Assume f is linear: f(φ(x)) = φ(x)ᵀβ for some β
I If p is large compared to N then we may overfit
I So choose β to minimise the sum of squared errors plus complexity

penalty.

L(β) =
∑
i

(f(φ(xi))− yi)2 + λ‖β‖2

= (Y − Φβ)ᵀ(Y − Φβ) + λβᵀβ
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Ridge Regression in Feature Space

L(β) = (Y − Φβ)ᵀ(Y − Φβ) + λβᵀβ

dL

dβ
= 0 =⇒ 0 = −2ΦᵀY + 2ΦᵀΦβ + 2λβ

=⇒ β = (ΦᵀΦ + λpI)−1ΦᵀY
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Ridge Regression in Feature Space

β = (ΦᵀΦ + λpI)−1ΦᵀY
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Ridge Regression in Feature Space

β = (ΦᵀΦ + λpI)−1ΦᵀY

Two observations:
I ΦᵀΦ is NOT the Gram matrix
I (ΦᵀΦ + λIp)Φ

ᵀ = ΦᵀΦΦᵀ + λΦᵀ = Φᵀ(ΦΦᵀ + λIN )

All eigenvalues of ΦᵀΦ and ΦΦᵀ are ≥ 0 and so both bracketed
expressions are invertible. Thus

Φᵀ(ΦΦᵀ + λIN )−1 = (ΦᵀΦ + λIp)
−1Φᵀ

9 of 33



Regularised feature-mapped regression

So instead we can write

β = Φᵀ(ΦΦᵀ + λIN )−1Y

=⇒ f(x∗) = φ(x∗)
ᵀΦᵀ(ΦΦᵀ + λIN )−1Y
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Regularised feature-mapped regression

So instead we can write

β = Φᵀ(ΦΦᵀ + λIN )−1Y

=⇒ f(x∗) = φ(x∗)
ᵀΦᵀ(ΦΦᵀ + λIN )−1Y

Some reasons this might be good:

I If p > N then the matrix inversion takes O(N3) operations
compared to O(p3)

I φ(x) only ever appears as an inner product - so might not need to
explicitly represent φ
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Brief Introduction to RKHS Theory

Definition (Kernel)

A function k : X × X −→ R is a kernel if it is symmetric and if, for any
x1, . . . , xn ∈ X , the matrix K with entries Kij = k(xi, xj) is positive
semi-definite.

11 of 33



Brief Introduction to RKHS Theory

Definition (Kernel)

A function k : X × X −→ R is a kernel if it is symmetric and if, for any
x1, . . . , xn ∈ X , the matrix K with entries Kij = k(xi, xj) is positive
semi-definite.

K positive semi-definite ⇐⇒ aᵀKa ≥ 0 for any a ∈ Rn.

11 of 33



Brief Introduction to RKHS Theory

Definition (Kernel)

A function k : X × X −→ R is a kernel if it is symmetric and if, for any
x1, . . . , xn ∈ X , the matrix K with entries Kij = k(xi, xj) is positive
semi-definite.

K positive semi-definite ⇐⇒ aᵀKa ≥ 0 for any a ∈ Rn.

Example: Let φ : X −→ H be any map into a Hilbert space, then
k(x, x′) = 〈φ(x), φ(x′)〉H is a kernel.

I Symmetry: inherited from 〈., .〉
I +ve semidefinite:
aᵀKa =

∑
ij〈aiφ(xi), ajφ(xj)〉H = ‖

∑
i aiφ(xi)‖2H ≥ 0
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Brief Introduction to RKHS Theory

Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions X −→ R. We say that H is a
Reproducing Kernel Hilbert Space (RKHS) if the evaluation operators
δx : H −→ R, f 7→ f(x) are continuous for all x ∈ X
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Brief Introduction to RKHS Theory

Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions X −→ R. We say that H is a
Reproducing Kernel Hilbert Space (RKHS) if the evaluation operators
δx : H −→ R, f 7→ f(x) are continuous for all x ∈ X

δx continuous means...

I convergence in norm of a sequence of functions implies pointwise
convergence at every point so functions are ‘smooth’

I by Riesz, there exists a unique φx ∈ H such that f(x) = 〈f, φx〉
for all f ∈ H.

We call k : X × X −→ R, (x, x′) 7→ 〈φx, φx′〉 the (unique) Reproducing
Kernel of H

12 of 33



Brief Introduction to RKHS Theory

Summary:
I An RKHS on a base set X is just1 a set of functions X −→ R
I Given an RKHS, we can construct a kernel on X

1with some previously mentioned caveats
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Brief Introduction to RKHS Theory

Summary:
I An RKHS on a base set X is just1 a set of functions X −→ R
I Given an RKHS, we can construct a kernel on X

Remarkably, the converse holds.

Theorem (Moore-Aronszajn)

Suppose that k : X × X −→ R is a kernel. Then there exists an RKHS
H and feature map φ : X −→ H such that
k(x, x′) = 〈φ(x), φ(x′)〉H

I H is the smallest Hilbert space containing each k(·, x)

I properties of functions determined through properties of k(·, x)

1with some previously mentioned caveats

13 of 33



Kernel Ridge Regression

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X ,
yi ∈ Y = R

I Want to infer a function f : X −→ R so that f explains* D.
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Kernel Ridge Regression

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X ,
yi ∈ Y = R

I Want to infer a function f : X −→ R so that f explains* D.

An approach:
I Pick a kernel k such that the functions k(·, x) are ‘good’
I Consider the RKHS H corresponding to k
I Find the f ∈ H that minimises empirical squared error (with

penalty for complexity)

arg min
f∈H

∑
i

(f(xi)− yi)2 + λ‖f‖2H
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Kernel Ridge Regression

arg min
f∈H

∑
i

(f(xi)− yi)2 + λ‖f‖2H

How do we find the argmin?
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arg min
f∈H

∑
i

(f(xi)− yi)2 + λ‖f‖2H

How do we find the argmin? Answer:

Theorem (Representer theorem)

The solution f∗ to the above problem lies in the subspace of H spanned
by the set {k(·, xi)|i = 1, . . . , N}. ie
f∗ =

∑
i αik(·, xi) for some coefficients αi
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Kernel Ridge Regression

arg min
f∈H

∑
i

(f(xi)− yi)2 + λ‖f‖2H

How do we find the argmin? Answer:

Theorem (Representer theorem)

The solution f∗ to the above problem lies in the subspace of H spanned
by the set {k(·, xi)|i = 1, . . . , N}. ie
f∗ =

∑
i αik(·, xi) for some coefficients αi

arg min
α∈RN

∑
i

(fα(xi)− yi)2 + λ‖fα‖2H
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Kernel Ridge Regression

Proof:
I Let f ∈ H
I Let fs be the projection of f onto span{k(·, xi)}
I Let f⊥ = f − fs ⊥ span{k(·, xi)}

16 of 33



Kernel Ridge Regression

Proof:
I Let f ∈ H
I Let fs be the projection of f onto span{k(·, xi)}
I Let f⊥ = f − fs ⊥ span{k(·, xi)}

We show that fs is better than f in the sense that:

I The loss function is the same: (fs(x)− y)2 = (f(x)− y)2

I The complexity penalty is smaller: ‖fs‖2H ≤ ‖f‖2H
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Kernel Ridge Regression

For each term in the loss function we have:

(f(xi)− yi)2 = (fs(xi) + f⊥(xi)− yi)2

= (〈fs, k(·, xi)〉+ 〈f⊥, k(·, xi)〉 − yi)2

= (〈fs, k(·, xi)〉 − yi)2

= (fs(xi)− yi)2
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= (〈fs, k(·, xi)〉+ 〈f⊥, k(·, xi)〉 − yi)2

= (〈fs, k(·, xi)〉 − yi)2

= (fs(xi)− yi)2

Considering the complexity penalty:

‖f‖2H = ‖fs + f⊥‖2H
= ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖2H
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Kernel Ridge Regression

For each term in the loss function we have:

(f(xi)− yi)2 = (fs(xi) + f⊥(xi)− yi)2

= (〈fs, k(·, xi)〉+ 〈f⊥, k(·, xi)〉 − yi)2

= (〈fs, k(·, xi)〉 − yi)2

= (fs(xi)− yi)2

Considering the complexity penalty:

‖f‖2H = ‖fs + f⊥‖2H
= ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖2H

So fs is better than f ! Thus optimal f∗ must lie in span{k(·, xi)}
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Kernel Ridge Regression

Writing f =
∑

j αjk(·, xj), we wish to minimise the following quantity
over α:

L(α) =
∑
i

(f(xi)− yi)2 + λ‖f‖2

=
∑
i

(
∑
j

〈αjk(·, xj), k(·, xi)〉 − yi)2 + λ〈f, f〉

=
∑
i

((Kα)i − yi)2 + λ
∑
ij

〈αik(·, xi), αjk(·, xj)〉

= (Kα− Y )ᵀ(Kα− Y ) + λαᵀKα
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Kernel Ridge Regression

Differentiating with respect to α yields

dL

dα
= 2KKα− 2KY + 2λKα

= 2K(Kα− Y + λα)

= 2K((K + λIN )α− Y ) = 0

=⇒ α = (K + λIN )−1Y
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Kernel Ridge Regression

Differentiating with respect to α yields

dL

dα
= 2KKα− 2KY + 2λKα

= 2K(Kα− Y + λα)

= 2K((K + λIN )α− Y ) = 0

=⇒ α = (K + λIN )−1Y

For a new point x∗, writing k to be the vector with ki = k(x∗, xi) we
see that
f(x∗) =

∑
i αik(x∗, xi) = kᵀ(K + λIN )−1Y
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Solution is the same as before

Old solution:

f(x∗) = φ(x∗)
ᵀΦᵀ(ΦΦᵀ + λIN )−1Y

New solution:

f(x∗) = kᵀ(K + λIN )−1Y

I If we look ‘inside’ the k and K, we see that these are the same.
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Summary so far

I Starting with linear regression, we have derived Kernel Ridge
Regression.
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Summary so far

I Starting with linear regression, we have derived Kernel Ridge
Regression.

I Crucial idea 1: Regulariser λ let us write all computations in terms
of inner products between feature mapped observations.

I Crucial idea 2: Representer theorem =⇒ can project infinite
dimensional optimisation problem to finite dimensional space

Diferent approach?

I Motivation to use regulariser was to prevent overfitting
I Could instead adopt a Bayesian approach
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GP Regression

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X ,
yi ∈ Y = R and feature map φ : X −→ Rp

I Want to infer a function f : Rp −→ R so that f ◦ φ explains D.
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GP Regression

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X ,
yi ∈ Y = R and feature map φ : X −→ Rp

I Want to infer a function f : Rp −→ R so that f ◦ φ explains D.

An approach:
I Assume f is linear: f(φ(x)) = φ(x)ᵀα for some α
I Place prior over α, add noise and perform Bayesian inference

y(x) = φ(x)ᵀw + ε w ∼ N (w|0, σ2
wI), ε ∼ N (ε|0, σ2

ε )
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GP Regression

w, ε Gaussian =⇒ y is Gaussian with

E(y(x)) = φ(x)ᵀE(w) + E(ε) = 0

Cov(y(x), y(x′)) = σ2
wφ(x)ᵀφ(x′) + δx=x′σ2

ε
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E(y(x)) = φ(x)ᵀE(w) + E(ε) = 0

Cov(y(x), y(x′)) = σ2
wφ(x)ᵀφ(x′) + δx=x′σ2

ε

I Write K for the matrix with Kij = φ(xi)
ᵀφ(xj)

I k for the vector with ki = φ(x∗)
ᵀφ(xi)

I c = φ(x∗)
ᵀφ(x∗)

I y = (y1, . . . , yN , y∗)
ᵀ
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GP Regression

w, ε Gaussian =⇒ y is Gaussian with

E(y(x)) = φ(x)ᵀE(w) + E(ε) = 0

Cov(y(x), y(x′)) = σ2
wφ(x)ᵀφ(x′) + δx=x′σ2

ε

I Write K for the matrix with Kij = φ(xi)
ᵀφ(xj)

I k for the vector with ki = φ(x∗)
ᵀφ(xi)

I c = φ(x∗)
ᵀφ(x∗)

I y = (y1, . . . , yN , y∗)
ᵀ

y ∼ N (y|0, σ2
w

(
K + σ2

ε
σ2
w
IN k

kᵀ c+ σ2
ε

σ2
w

)
)
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GP Regression

Manipulating Gaussians shows that

y∗|(y1, . . . , yN ) ∼ N (y∗|µ,Σ)

where

µ = kᵀ(K +
σ2
ε

σ2
w

IN )−1yo

Σ = σ2
wc+ σ2

ε − σ2
wkᵀ(K +

σ2
ε

σ2
w

IN )−1k
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GP Regression

µ = kᵀ(K + σ2
ε

σ2
w

IN )−1yo
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GP Regression

µ = kᵀ(K + σ2
ε

σ2
w

IN )−1yo
Some observations:

I Posterior mean depends on the ratio σ2
ε

σ2
w

I Setting σ2
w = 1 and σ2

ε = λ, we have KRR solution
I Cov(y(x), y(x′)) was in terms of inner products - can replace with

any kernel function.

Conclusion:

I KRR with kernel k and regularisation λ ⊂ GP regression with
kernel k′ = k + λδx=x′

In fact, if we use the kernel k′ for KRR without regularisation and just
work through, we get the same answer2.

2This is cheating really, because there is no unique optimum in this case
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Frequentist Regression as MAP

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X , yi ∈ Y
I Want to infer a function f : X −→ Y so that f explains D.
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Frequentist Regression as MAP

Problem:
I Given observations D = {xi, yi|i = 1, . . . , N} with xi ∈ X , yi ∈ Y
I Want to infer a function f : X −→ Y so that f explains D.

An approach:
I Choose some set of candidate functions F
I Choose some loss function L(f,D) to penalise misfitting the data
I Choose some complexity penalty Ω(f) to prevent overfitting
I Find best f ∈ F to minimise sum:

arg min
f∈F

L(f,D) + Ω(f)
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Frequentist Regression as MAP

If L(f,D) =
∑

i L(f(xi), yi) then the problem is equivalent to

arg max
f∈F

∏
i

e−L(f(xi),yi)e−Ω(f) (*)
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Frequentist Regression as MAP

If L(f,D) =
∑

i L(f(xi), yi) then the problem is equivalent to

arg max
f∈F

∏
i

e−L(f(xi),yi)e−Ω(f) (*)

If we can interpret

I e−Ω(f) as a prior over F
I e−L(f(xi),yi) as a likelihood

Then solving (*) is the same as performing MAP inference over F .
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Kernel Ridge Regression as MAP

In Kernel Ridge Regression, the Representer theorem allowed us to
restrict ourselves from F = H to span{k(·, xi)}. We parameterise f by
α, and have Ω(f) = λαᵀKα. So we seek

arg max
α

∏
i

e−(fα(xi)−yi)2e−λα
ᵀKα

= arg max
α

∏
i

e−
1
2λ

(fα(xi)−yi)2e−
1
2
αᵀKα
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Kernel Ridge Regression as MAP

In Kernel Ridge Regression, the Representer theorem allowed us to
restrict ourselves from F = H to span{k(·, xi)}. We parameterise f by
α, and have Ω(f) = λαᵀKα. So we seek

arg max
α

∏
i

e−(fα(xi)−yi)2e−λα
ᵀKα

= arg max
α

∏
i

e−
1
2λ

(fα(xi)−yi)2e−
1
2
αᵀKα

This is like finding the MAP solution in the model:

y|α, x ∼ N (fα(x), λ) α ∼ N (0,K−1)
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Kernel Ridge Regression as MAP

y|α, x ∼ N (fα(x), λ) α ∼ N (0,K−1)

I Prior over α is Gaussian, fα(x) = kᵀα =⇒ y is Gaussain
I p(α|D) also Gaussian due to self-conjugacy of Gaussian
I posterior over y is Gaussian
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Kernel Ridge Regression as MAP

y|α, x ∼ N (fα(x), λ) α ∼ N (0,K−1)

I Prior over α is Gaussian, fα(x) = kᵀα =⇒ y is Gaussain
I p(α|D) also Gaussian due to self-conjugacy of Gaussian
I posterior over y is Gaussian

So this model is a GP, and KRR gives its MAP solution
Question: are there regression methods that are not strictly worse than
GPs?
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Support Vector Regression

We can do the same as Kernel Ridge Regression but with a different
loss function:

L(f(x), y) =

{
0 if |f(x)− y| < ε
|f(x)− y| − ε if |f(x)− y| ≥ ε
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Support Vector Regression

We can do the same as Kernel Ridge Regression but with a different
loss function:

L(f(x), y) =

{
0 if |f(x)− y| < ε
|f(x)− y| − ε if |f(x)− y| ≥ ε

Why this might be a sensible L:

1. Robust to outliers - linear
rather than quadratic loss

2. Sparse solutions - any points
inside ε-tube around function
are ignored
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Support Vector Regression

Want to solve:

arg min
f∈H

∑
i

L(f(xi), yi) + λ‖f‖2H
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I Representer theorem =⇒ solution lies in span{k(·, xi)}
I Parameterise this subspace by α writing fα(x) =

∑
i αik(x, xi)
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Support Vector Regression

Want to solve:

arg min
f∈H

∑
i

L(f(xi), yi) + λ‖f‖2H

I Representer theorem =⇒ solution lies in span{k(·, xi)}
I Parameterise this subspace by α writing fα(x) =

∑
i αik(x, xi)

I As before, problem reduces to:

arg min
α

∑
i

L(fα(xi), yi) + λαᵀKα
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Support Vector Regression

This corresponds to the problem

arg max
α

∏
i

e−
1
2λ
L(fα(xi),yi)e−

1
2
αᵀKα

Equivalently, finding the MAP solution in the model:

p(y|α, x) ∝ e−
1
2λ
L(fα(x),y) α ∼ N (0,K−1)
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Support Vector Regression

This corresponds to the problem

arg max
α

∏
i

e−
1
2λ
L(fα(xi),yi)e−

1
2
αᵀKα

Equivalently, finding the MAP solution in the model:

p(y|α, x) ∝ e−
1
2λ
L(fα(x),y) α ∼ N (0,K−1)

I Prior on α is Gaussian, likelihood not Gaussian
I =⇒ y not Gaussian, posterior p(α|D) not Gaussian
I =⇒ latent function values fα(x) = kᵀα will not be Gaussian

So Support Vector Regression is distinct from Gaussian Process
Regression.
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Conclusion

1. Derived Kernel Ridge Regression

33 of 33



Conclusion

1. Derived Kernel Ridge Regression
2. KRR solution same as GP posterior mean (so KRR ⊂ GP)

33 of 33



Conclusion

1. Derived Kernel Ridge Regression
2. KRR solution same as GP posterior mean (so KRR ⊂ GP)
3. KRR is like MAP inference in GP model

33 of 33



Conclusion

1. Derived Kernel Ridge Regression
2. KRR solution same as GP posterior mean (so KRR ⊂ GP)
3. KRR is like MAP inference in GP model
4. Support Vector Regression is not comparable to GP regression
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