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Ordinary Least Squares (OLS) Linear Regression

Problem:

» Given observations D = {x;,y;[i = 1,..., N} with x; € XY = RP
andy; € Y =R
» Want to infer a function f : RP — R that explains* D.
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Ordinary Least Squares (OLS) Linear Regression

Problem:

» Given observations D = {x;,y;[i =1,..., N} with x; € X =RP
andy; € Y =R
» Want to infer a function f : RP — R that explains* D.
An approach:
» Assume f is linear: f(x) = xTf3 for some /3

» Choose 3 to minimise the sum of squared errors.
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Ordinary Least Squares (OLS) Linear Regression

Problem:
» Given observations D = {x;,y;[i = 1,..., N} with x; € XY = RP
andy; € Y =R

» Want to infer a function f : RP — R that explains* D.

An approach:
» Assume f is linear: f(x) = xTf3 for some /3

» Choose 3 to minimise the sum of squared errors.
Writing X = (x1,%2,...,xx5)T and Y = (y1,...,yn)T, we wish to

minimise

L(B) = (Y = XB)T(Y — XB)
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OLS (cont)

L(B) = (Y = XB)T(Y — X3)
=YTY —287XTY + BTXTXS
dL

— = 2XTY +2X7X
— 0 + B

So % =0 = B=(XTX)IXTY if (XTX)"! exists.
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OLS (cont)

Two problems.

1. What if X7X is not invertible?

2. What if y is not well approximated by a linear function of x?
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OLS (cont)

Two problems.

1. What if XTX is not invertible?
2. What if y is not well approximated by a linear function of x?

Solutions:

1. Eigenvalues of XTX are always > 0
—> XTX + A invertible for A > 0... why?

2. Can replace x with ¢(x), where ¢ : X — RP.
Write @ := ¢(X)
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Ridge Regression in Feature Space

Problem:

» Given observations D = {x;,y;|i = 1,..., N} with x; € X,
yi € Y =R and feature map ¢ : X — R?

» Want to infer a function f : RP — R so that f o ¢ explains* D.
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Ridge Regression in Feature Space

Problem:
» Given observations D = {x;,y;|i = 1,..., N} with x; € X,
y; € Y =R and feature map ¢ : X — R?
» Want to infer a function f : R? — R so that f o ¢ explains* D.

An approach:
» Assume f is linear: f(¢p(x)) = ¢(x)T3 for some 3
» If pis large compared to N then we may overfit
» So choose 3 to minimise the sum of squared errors plus complexity
penalty.

L(B) = > () — vi)* + MBI

7

=Y =2p)T(Y - 06) +A7S
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Ridge Regression in Feature Space

L(B) = (Y = @B)T(Y — @6) + AGTS

dL

G =0 = 0= —20TY + 2078 + 2)3

— B=(PTD + N\, 1) 1DTY
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Ridge Regression in Feature Space

B= (DT + N\, 1) 1OTY

NIVERSITY OF

"AMBRIDGE



Ridge Regression in Feature Space

B= (DT + N\, 1) 1OTY

Two observations:
» ®TD is NOT the Gram matrix
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Ridge Regression in Feature Space

B= (DT + N\, 1) 1OTY

Two observations:
» ®TD is NOT the Gram matrix
> (DTD + AL)DT = BTHDT + \DT = OT(GDT + ALy)
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Ridge Regression in Feature Space

B= (DT + N\, 1) 1OTY

Two observations:
» ®TD is NOT the Gram matrix
> (DTD + AL)DT = BTHDT + \DT = OT(GDT + ALy)

All eigenvalues of ®T® and ®PT are > 0 and so both bracketed
expressions are invertible. Thus

BT(PDT + M)t = (DTD 4 A1 @T
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Regularised feature-mapped regression

So instead we can write

B =0T (DDT + \y) 'Y
= f(%x:) = ¢(x)TOT(PDT + M) 'Y
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Regularised feature-mapped regression

So instead we can write

B =0T (DDT + \y) 'Y
= f(%x:) = ¢(x)TOT(PDT + M) 'Y

Some reasons this might be good:

> If p > N then the matrix inversion takes O(N?3) operations
compared to O(p?)

» ¢(x) only ever appears as an inner product - so might not need to
explicitly represent ¢
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Brief Introduction to RKHS Theory

Definition (Kernel)

A function k : X x X — R is a kernel if it is symmetric and if, for any
x1,...,%, € X, the matrix K with entries K;; = k(x;,x;) is positive
semi-definite.
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Brief Introduction to RKHS Theory

Definition (Kernel)

A function k : X x X — R is a kernel if it is symmetric and if, for any
x1,...,%, € X, the matrix K with entries K;; = k(x;,x;) is positive
semi-definite.

K positive semi-definite <= aTKa > 0 for any a € R™.
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Brief Introduction to RKHS Theory

Definition (Kernel)

A function k : X x X — R is a kernel if it is symmetric and if, for any
x1,...,%, € X, the matrix K with entries K;; = k(x;,x;) is positive
semi-definite.

K positive semi-definite <= aTKa > 0 for any a € R™.

Example: Let ¢ : X — H be any map into a Hilbert space, then
k(x,2") = (p(x), p(2'))3 is a kernel.
» Symmetry: inherited from (., .)

» +ve semidefinite:

aTKa =3 {aip(wi), a;¢(x))m = || 22 a(@i)lf3, > 0
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Brief Introduction to RKHS Theory

Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions X — R. We say that H is a
Reproducing Kernel Hilbert Space (RKHS) if the evaluation operators
0z : H— R, f — f(z) are continuous for all x € X




Brief Introduction to RKHS Theory

Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions X — R. We say that H is a
Reproducing Kernel Hilbert Space (RKHS) if the evaluation operators
0z : H— R, f — f(z) are continuous for all x € X

0, continuous means...

» convergence in norm of a sequence of functions implies pointwise
convergence at every point so functions are ‘smooth’
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Brief Introduction to RKHS Theory

Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions X — R. We say that H is a
Reproducing Kernel Hilbert Space (RKHS) if the evaluation operators
0z : H— R, f — f(z) are continuous for all x € X

0, continuous means...

» convergence in norm of a sequence of functions implies pointwise
convergence at every point so functions are ‘smooth’

» by Riesz, there exists a unique ¢, € H such that f(z) = (f, ¢z)
for all f € H.
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Brief Introduction to RKHS Theory

Definition (Reproducing Kernel Hilbert Space)

Let H be a Hilbert space of functions X — R. We say that H is a
Reproducing Kernel Hilbert Space (RKHS) if the evaluation operators
0z : H— R, f — f(z) are continuous for all x € X

0, continuous means...

» convergence in norm of a sequence of functions implies pointwise
convergence at every point so functions are ‘smooth’

» by Riesz, there exists a unique ¢, € H such that f(z) = (f, ¢z)
for all f € H.

Wecall £ : X x X — R, (z,2") — (¢, ) the (unique) Reproducing
Kernel of H
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Brief Introduction to RKHS Theory

Summary:
» An RKHS on a base set X is just! a set of functions ¥ — R

» Given an RKHS, we can construct a kernel on X

Lwith some previously mentioned caveats
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Brief Introduction to RKHS Theory

Summary:
» An RKHS on a base set X is just! a set of functions ¥ — R
» Given an RKHS, we can construct a kernel on X’

Remarkably, the converse holds.

Theorem (Moore-Aronszajn)

Suppose that k : X x X — R is a kernel. Then there exists an RKHS
‘H and feature map ¢ : X — H such that

k(z,2") = (¢(x), o))

Lwith some previously mentioned caveats
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Brief Introduction to RKHS Theory

Summary:
» An RKHS on a base set X is just! a set of functions ¥ — R
» Given an RKHS, we can construct a kernel on X’

Remarkably, the converse holds.

Theorem (Moore-Aronszajn)

Suppose that k : X x X — R is a kernel. Then there exists an RKHS
‘H and feature map ¢ : X — H such that

k(z,2") = (¢(x), o))

» H is the smallest Hilbert space containing each k(-, )

» properties of functions determined through properties of k(-, x)

Lwith some previously mentioned caveats
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Kernel Ridge Regression

Problem:
» Given observations D = {x;,y;|i = 1,..., N} with x; € X,
vicyY=R

» Want to infer a function f : X — R so that [ explains* D.
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Kernel Ridge Regression

Problem:
» Given observations D = {x;,y;li = 1,..., N} with x; € X,
yieY=R

» Want to infer a function f: X — R so that f explains* D.

An approach:
» Pick a kernel k& such that the functions k(-, z) are ‘good’
» Consider the RKHS H corresponding to k
» Find the f € #H that minimises empirical squared error (with
penalty for complexity)

arg min 2113
gmin}_(f( z

i
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Kernel Ridge Regression

arg min ) — )2+ M| fl13%
g > i

%

How do we find the argmin?
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Kernel Ridge Regression

arg min ) — )2+ M| fl13%
g > i

%

How do we find the argmin? Answer:

Theorem (Representer theorem)

The solution f, to the above problem lies in the subspace of H spanned
by the set {k(-,x;)|li=1,...,N}. ie
fs =2, a;k(-,x;) for some coefficients o
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Kernel Ridge Regression

arg min ) — )2+ M| fl13%
gm > i

%

How do we find the argmin? Answer:

Theorem (Representer theorem)

The solution f, to the above problem lies in the subspace of H spanned
by the set {k(-,x;)|li=1,...,N}. ie
fs =2, a;k(-,x;) for some coefficients o

argmlnz fa(xi —yz) +)‘||focHH

a€RN
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Kernel Ridge Regression

Proof:
> Let feH
» Let f, be the projection of f onto span{k(-,x;)}
> Let f1 = f— fs Lspan{k(, zi)}
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Kernel Ridge Regression

Proof:
> Let feH
» Let f, be the projection of f onto span{k(-,x;)}
> Let f1 = f— fs Lspan{k(, zi)}

We show that fs is better than f in the sense that:

» The loss function is the same: (fs(z) — y)? = (f(z) —y)?
» The complexity penalty is smaller: || f||3, < || f]I3
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Kernel Ridge Regression

For each term in the loss function we have:

(f(xz) - yz) fs(ajz) + fL(sz) yi)2

(

(s k(s @) + (FL, k(@) = 90)?
= ({fs; k(-

= (

(fs k(- 2)) — yi)Q
fs(@i) = yi)?
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Kernel Ridge Regression

For each term in the loss function we have:

(f (i) = 9i)* = (fs(@i) + fo(@i) — i)

(fos k(i) + (fi k(i) — i)
(fo, k() — i)
fs(@i) — yz)

Considering the complexity penalty:

1F13 = I + Fol3
= |l fsllFe + IFLl3 = 116l

(f
= (
(
= (
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Kernel Ridge Regression

For each term in the loss function we have:

(F(zs) = 1) = (fs(m) + fo(@i) — ws)?

= ((fo, k() + (fL k(- mi)) — i)
((for k(i) — i)
=(

fs(ajz) yz)

Considering the complexity penalty:

1F13 = I + Fol3
= |l fsllFe + IFLl3 = 116l

So fs is better than f! Thus optimal f. must lie in span{k(-, z;)}
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Kernel Ridge Regression

Writing f = Zj ajk(-, ), we wish to minimise the following quantity
over a:

L) = (F(ws) =9 + Al
= Z(Z(ajk(’ :Ej)’ k‘(-, l'z)) - yi)2 + )‘<fa f>

= > ()~ ) +Azaz (7))

=(Ka-Y)'(Ka-Y) —i—)\aTKa
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Kernel Ridge Regression

Differentiating with respect to « yields

L
fl— =2KKa—-2KY + 2 K«
o)

=2K(Ka—-Y + \a)
=2K((K +My)a—Y) =0
— a=(K+My)'Y
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Kernel Ridge Regression

Differentiating with respect to « yields

L
fl— =2KKa—-2KY + 2 K«
o)

=2K(Ka—-Y + \a)
=2K((K +My)a—Y) =0
— a=(K+My)'Y

For a new point z,, writing k to be the vector with k; = k(x,, x;) we
see that
flze) =, aik(ze,2) = KT (K + My)7lY
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Solution is the same as before

Old solution:

f(x4) = p(x,)TOT (DT + Ay) 1Y

New solution:

fzy) =kT(K + My) Y

» If we look ‘inside’ the k and K, we see that these are the same.
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Summary so far

» Starting with linear regression, we have derived Kernel Ridge
Regression.
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Summary so far

» Starting with linear regression, we have derived Kernel Ridge
Regression.

» Crucial idea 1: Regulariser A let us write all computations in terms
of inner products between feature mapped observations.
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Summary so far

» Starting with linear regression, we have derived Kernel Ridge
Regression.

» Crucial idea 1: Regulariser A let us write all computations in terms
of inner products between feature mapped observations.

» Crucial idea 2: Representer theorem = can project infinite
dimensional optimisation problem to finite dimensional space
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Summary so far

» Starting with linear regression, we have derived Kernel Ridge
Regression.

» Crucial idea 1: Regulariser A let us write all computations in terms
of inner products between feature mapped observations.

» Crucial idea 2: Representer theorem = can project infinite
dimensional optimisation problem to finite dimensional space

Diferent approach?

» Motivation to use regulariser was to prevent overfitting

» Could instead adopt a Bayesian approach

UNIVERSITY OF

CAMBRIDGE



GP Regression

Problem:

» Given observations D = {x;,y;|i = 1,..., N} with x; € X,
yi € Y =R and feature map ¢ : X — R?

» Want to infer a function f : R? — R so that f o ¢ explains D.
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GP Regression

Problem:

» Given observations D = {x;,y;|i = 1,..., N} with x; € X,
yi € Y =R and feature map ¢ : X — R?

» Want to infer a function f : R? — R so that f o ¢ explains D.

An approach:
» Assume f is linear: f(¢p(x)) = ¢(x)Tar for some «

» Place prior over «, add noise and perform Bayesian inference

y(x) =o(x)Twre  w~N(wl0,05D), e~ N(e0,07)
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GP Regression

w, e Gaussian = y is Gaussian with

E(y(x)) = ¢(x)TE(W) + E(e) = 0
Cov(y(x), y(x') = 05, d(x)TG(x') + dxx0?
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GP Regression

w, e Gaussian = y is Gaussian with

E(y(x)) = ¢(x)TE(W) + E(e) = 0
Cov(y(x), y(x') = 05, d(x)TG(x') + dxx0?

» Write K for the matrix with K;; = ¢(x;)To(x;)
» k for the vector with k; = ¢(x,)To(x;)
> e = P(x)Th(x4)

> y:(yla"'ayNay*)T
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GP Regression

w, e Gaussian = y is Gaussian with

E(y(x)) = ¢(x)TE(W) + E(e) = 0
Cov(y(x), y(x') = 05, d(x)TG(x') + dxx0?

» Write K for the matrix with K;; = ¢(x;)To(x;)
» k for the vector with k; = ¢(x,)To(x;)
> e = P(x)Th(x4)

> y:(yla"'ayNay*)T

K-l-fIN k
y ~ N(yl|0,02 i 2 ])
kT c+ 5
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GP Regression

Manipulating Gaussians shows that

Yol (1, - - yn) ~ Nyl 1, )

where

T 062 —1
p=KI(K + %510y,
Ow

2
S = o2c+ 02 — o2k (K + —1y) 'k
a.

w
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GP Regression

w=KkT(K + %IN)_lyo

= UNIVERSITY OF

AMBRIDGE



GP Regression

2
p=KkT(K+ %ZUIN)_IYO
Some observations:
o2

> Posterior mean depends on the ratio —s
w
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GP Regression

2
p=KkT(K+ %ZUIN)_IYO
Some observations:

2
> Posterior mean depends on the ratio Z¢
w

2

2 = A, we have KRR solution

> Setting 02 =1 and o
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GP Regression

2
p=KkT(K+ %ZUIN)_IYO
Some observations:

2
> Posterior mean depends on the ratio Z¢
w

» Setting 02 = 1 and 02 = \, we have KRR solution

» Cov(y(x),y(x)) was in terms of inner products - can replace with
any kernel function.
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GP Regression

2
p=KkT(K+ %ZUIN)_IYO
Some observations:

2
> Posterior mean depends on the ratio Z¢
w

» Setting 02 = 1 and 02 = \, we have KRR solution

» Cov(y(x),y(x)) was in terms of inner products - can replace with
any kernel function.

Conclusion:

» KRR with kernel k& and regularisation A C GP regression with
kernel k' = k + A0p—y
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GP Regression

2
w=KkT(K + %IN)_lyo
Some observations:
2
» Posterior mean depends on the ratio Z—;
» Setting 02 = 1 and 02 = \, we have KRR solution
» Cov(y(x),y(x)) was in terms of inner products - can replace with
any kernel function.

Conclusion:

» KRR with kernel k& and regularisation A C GP regression with
kernel k' = k + A0p—y

In fact, if we use the kernel &’ for KRR without regularisation and just

work through, we get the same answer?.

2This is cheating really, because there is no unique optimum in this case
= UNIVERSITY OF
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Frequentist Regression as MAP

Problem:
» Given observations D = {x;,y;li =1,..., N} withx; e X, y; € Y
» Want to infer a function f : X — ) so that f explains D.
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Frequentist Regression as MAP

Problem:
» Given observations D = {x;,y;[i =1,...,N} withx; € X, y; € Y
» Want to infer a function f : X — ) so that f explains D.

An approach:
» Choose some set of candidate functions F
» Choose some loss function L(f,D) to penalise misfitting the data
» Choose some complexity penalty Q(f) to prevent overfitting

» Find best f € F to minimise sum:

argmin L(f, D) + Q(f)
feF
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Frequentist Regression as MAP

If L(f,D) =), L(f(z;),y;) then the problem is equivalent to

f(xz) yz (f) *
arg max | | e
feF ( )

7
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Frequentist Regression as MAP

If L(f,D) =), L(f(z;),y;) then the problem is equivalent to

f(xz) yz (f) *
arg max | | e
feF ( )

7

If we can interpret

» ¢ ) as a prior over F
» ¢ LUf(@)wi) 35 a likelihood

Then solving (*) is the same as performing MAP inference over F.
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Kernel Ridge Regression as MAP

In Kernel Ridge Regression, the Representer theorem allowed us to
restrict ourselves from F = H to span{k(-,z;)}. We parameterise f by
a, and have Q(f) = AaTKa. So we seek

arg max

o~ fa(@)—y)? ;~AaTKa
« .

(2
1 1
= arg max H e_ﬂ(fa(xi)_yi)2€_§aTKO‘

(2
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Kernel Ridge Regression as MAP

In Kernel Ridge Regression, the Representer theorem allowed us to
restrict ourselves from F = H to span{k(-,z;)}. We parameterise f by
a, and have Q(f) = AaTKa. So we seek

arg max

e—(fa(a:i)—yi)Qe—)\ozTKoz
@ ;

(2

=arg max H e_%(fa (xi)_yi)Qe—%OéTKoc
el ;

(2

This is like finding the MAP solution in the model:

ylo, x ~ N(fa(z),A) a~N(O0,E)

NIVERSITY OF

"AMBRIDGE



Kernel Ridge Regression as MAP

yla,z ~ N(fo(z),N) a~N(O,K

» Prior over « is Gaussian, fo(z) =kTa = y is Gaussain
» p(«a|D) also Gaussian due to self-conjugacy of Gaussian

> posterior over y is Gaussian
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Kernel Ridge Regression as MAP

yla,z ~ N(fo(z),N) a~N(O,K

» Prior over « is Gaussian, fo(z) =kTa = y is Gaussain
» p(«a|D) also Gaussian due to self-conjugacy of Gaussian

> posterior over y is Gaussian

So this model is a GP, and KRR gives its MAP solution
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Kernel Ridge Regression as MAP

yla,z ~ N(fo(z),N) a~N(O,K

» Prior over « is Gaussian, fo(z) =kTa = y is Gaussain
» p(«a|D) also Gaussian due to self-conjugacy of Gaussian
> posterior over y is Gaussian

So this model is a GP, and KRR gives its MAP solution

Question: are there regression methods that are not strictly worse than
GPs?
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Support Vector Regression

We can do the same as Kernel Ridge Regression but with a different
loss function:

0 it [f(z) —yl <e
L(f(x),y) —{ |f(x) —yl—€ if|f(z)—y|>e€
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Support Vector Regression

We can do the same as Kernel Ridge Regression but with a different
loss function:

(o 1 f(2) —y| < e
L(f(:v)»y)—{ |f(x) —yl—€ if|f(z)—y|>e€

Why this might be a sensible L: o

1. Robust to outliers - linear
rather than quadratic loss

2. Sparse solutions - any points
inside e-tube around function
are ignored
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Support Vector Regression

Want to solve:

argmin Y L(f(z),y:) + | f]3
e 1

7
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Support Vector Regression

Want to solve:

argmin Y L(f(z),y:) + | f]3
e 1

7

» Representer theorem = solution lies in span{k(-,z;)}

» Parameterise this subspace by o writing fo(z) = >, aik(z, ;)
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Support Vector Regression

Want to solve:

argmin Y L(f(z),y:) + | f]3
e 1

7

» Representer theorem = solution lies in span{k(-,z;)}
» Parameterise this subspace by o writing fo(z) = >, aik(z, ;)

» As before, problem reduces to:

arg min Z L(fa(xi),yi) + MaTKa

i
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Support Vector Regression

This corresponds to the problem

_ 1 Vo) —LaT
argmaXHe QAL(f(X(x'L)7y'L)€ saTKa
i

Equivalently, finding the MAP solution in the model:

p(yla, z) oc e~ 2x (@) o~ N(O,K)

JNIVERSITY OF

MBRIDGE



Support Vector Regression

This corresponds to the problem

L 1
a‘rg max H 67ﬁL(f0¢(xi)7yi)€*§aTKa
@ X

7

Equivalently, finding the MAP solution in the model:

p(yla, z) o e~ 75 Lal@)y) a~N@O K

» Prior on « is Gaussian, likelihood not Gaussian

» — y not Gaussian, posterior p(a|D) not Gaussian

» — latent function values f,(z) = kT will not be Gaussian
So Support Vector Regression is distinct from Gaussian Process
Regression.
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Conclusion

1. Derived Kernel Ridge Regression
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Conclusion

1. Derived Kernel Ridge Regression
2. KRR solution same as GP posterior mean (so KRR C GP)
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1. Derived Kernel Ridge Regression
2. KRR solution same as GP posterior mean (so KRR C GP)
3. KRR is like MAP inference in GP model
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1. Derived Kernel Ridge Regression

2. KRR solution same as GP posterior mean (so KRR C GP)
3. KRR is like MAP inference in GP model
4

. Support Vector Regression is not comparable to GP regression
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