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Motivation

Real world: complex and time evolving

Imperfect measurements
» Destructive
» Indirect

» Slow timescale
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Structural Equation Models (SEMs)

Doctor sees patient with Symptoms, gives Treatment and patient

Recovers or not.

Psrr determined by

Ps > S=fs(Es)
Probabilistic Prs «— T=1f(SEr)
Modelling Prir,s «— R=1R(S,T,Er)
PecerEx

SEM
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Perfect interventions override ‘causal mechanism’ f.



Structural Equation Models (SEMs)

Model | do(T = t)

Ps s S =fs(Es)

Probabilistic o(T—1t) +«— T=t SEM

Modelling PriT,s +—— R=1g(S, T, ER)
Peseren

Perfect interventions override ‘causal mechanism’ f.

For fixed 6, SEM implies family of Ps7r indexed by intervention.
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The Problem

Eg. Cell with gene knockouts, partially observable.
Gene A: -+~ ( < ?
Gene B: m— o °
Gene A: -+ \ ?
Gene B: %XO—

How do we interpret SEMs when variables are ‘abstracted’ from
true generative structure?



The Problem

~
Y



The Problem

Question:

How do the ‘Transformed’ SEMs relate to the originals?

How do we make sense of interventions in the Transformed SEMs?

?
Gene A: -+ %A ?
— (-
Gene B: -+~
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Can equilibria of ODEs be described by an SEM?
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Prior work

Similar problem considered in Mooij, Janzing and Schélkopf (2013):
Can equilibria of ODEs be described by an SEM?

Consider ‘constant’ interventions.

Extended further to include non-constant interventions to ask:

Can asymptotic behaviour of ODEs be described by an SEM?




The Framework

In brief:
I\
do(X; = x Vt)
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The Framework
Suppose that Mx = {Sx,Z,Pg, } is an SEM

» Sx = Structural equations on X € X
» 7 = Restricted set of interventions

» P = Distribution over exogenous variables

M x defines observational distribution over X

Px

For each i € Z, M x define interventional distribution over X’:
do(1)
Py

Thus Mx = Px = {Pdo( RS I}
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The Framework
Mx = Px = {]P’f(°(i) . ieTI}
Llet7: X — Y

» Y is ‘simpler’ or ‘transformed’ space

» 7 could represent e.g. measurement or transformation to data

X a random variable = 7(X) a random variable.

Define Py := 7(Px) via push-through measure.

Similarly, P, := 7 <P§<°(i)>
Py :={P, : ie€TI}

Does there exist My = {Sy,J,Pg, } such that My = Py?
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The Framework
If YES:

. . do(j i
Vi€ 3j € J such that IP’YOU) =Py

Thus can extend 7: Z — J via 7(i) = j < ]P)C:/OU)

Thus T(]P’?f('.)) = IP’(:,(’(T(i)), i.e. the diagram commutes:

do(7)

Py pdo()

X

do(7(/))

Py —» plolr()

=P



Example

do(X: = x Vt)

do(X = x)
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Some questions

Given 7, what conditions required on X7

» i.e. measurement device fixed - when can we represent causal
structure?

Given X, what 7 should we apply?

» i.e. how can we massage data to identify causal structure?

Given Y, what X can we abstractly represent?

> i.e. given restricted model class, when can we faithfully
represent more complex X7

Approximate abstraction by relaxing T(Pio(i)) = P‘i,o(T(i))



Summary

Causal structure may exist on levels we cannot observe directly.

Questions:
» Under what conditions can we still represent such structure?

» How can we assign meaning to such representations?

Introduced a framework for analysing transformations

We can now ask:

» What conditions required on X, 7 and Y for abstraction?



Fin

Thanks!
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Structural Equation Models (SEMs)

X ©  ® O

e do(Z = z)
X = fx(Ex) X = fx(Ex)
Y = fy(Ey) Y = fy(Ey)

Z=f(X,Y, Ez) Z=z
W = fw/(Z, Ew) W = fw(Z, Ew)



Example: Linear Gaussian Dynamics

Xir1 = aXy + N(O, 0')2()
Yiy1 = BXe +7Ye +N(07U%/)

Suppose observations come from the
stationary distribution

Pxy
== { Pyjdo(x=x)

Px|do(Y=y)

Problem: unless o« = l,ai = 0, cannot express distributions using
unconfounded SEM.



Example: Linear Gaussian Dynamics

Define ‘blurry measurements'’:

1

XM =—23%"X,
VTS
T

v(T) LZ Y,
VT

As T — oo, (XM, V(M) & (X, Y) for
which unconfounded SEM can express
observational and interventional
distributions.




Example: Linear Gaussian Dynamics

Introduce approximation error:

€ = min sup KL[P4 @d ]
SEM (¢ {interventions} o(¢)*'do(¢)

where Py, () is from true model,
IAP’dO(O is from SEM approximation.

Then e < 00, and e =+ 0as a — 1,
Var(X) — ¢




