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Structural Equation Models (SEMs)
Doctor sees patient with Symptoms, gives Treatment and patient
Recovers or not.
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T

PSTR determined by

Probabilistic
Modelling


PS ←→ S = fS(ES)
PT |S ←→ T = fT (S ,ET )
PR|T ,S ←→ R = fR(S ,T ,ER)
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Model | do(T = t)

Probabilistic
Modelling


PS ←→ S = fS(ES)
δ(T − t) ←→ T = t
PR|T ,S ←→ R = fR(S ,T ,ER)

PESETER

 SEM

Perfect interventions override ‘causal mechanism’ f·

For fixed θ, SEM implies family of PSTR indexed by intervention.
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How do we interpret SEMs when variables are ‘abstracted’ from
true generative structure?
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The Problem
Question:

How do the ‘Transformed’ SEMs relate to the originals?

How do we make sense of interventions in the Transformed SEMs?

· · ·

· · ·

· · ·

· · ·

Gene A:

Gene B:

A B

?



Prior work
Similar problem considered in Mooij, Janzing and Schölkopf (2013):

Can equilibria of ODEs be described by an SEM?

Consider ‘constant’ interventions.



Prior work
Similar problem considered in Mooij, Janzing and Schölkopf (2013):

Can equilibria of ODEs be described by an SEM?

Consider ‘constant’ interventions.

Extended further to include non-constant interventions to ask:

Can asymptotic behaviour of ODEs be described by an SEM?
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The Framework
In brief:

...
...

...
...

...
...

...
...

do(Xt = x ∀t)

do(X = x)

T T
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The Framework
Suppose thatMX = {SX , I,PEX

} is an SEM

I SX = Structural equations on X ∈ X
I I = Restricted set of interventions
I PE = Distribution over exogenous variables

MX defines observational distribution over X :

PX

For each i ∈ I,MX define interventional distribution over X :

Pdo(i)
X

ThusMX =⇒ PX = {Pdo(i)
X : i ∈ I}
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MX =⇒ PX = {Pdo(i)

X : i ∈ I}

Let τ : X −→ Y
I Y is ‘simpler’ or ‘transformed’ space
I τ could represent e.g. measurement or transformation to data

X a random variable =⇒ τ(X ) a random variable.

Define PY := τ(PX ) via push-through measure.

Similarly, Pi
Y := τ

(
Pdo(i)
X

)
PY := {Pi

Y : i ∈ I}

Does there existMY = {SY ,J ,PEY
} such thatMY =⇒ PY ?
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The Framework
If YES:

∀i ∈ I ∃j ∈ J such that Pdo(j)
Y = Pi

Y

Thus can extend τ : I −→ J via τ(i) = j ⇐⇒ Pdo(j)
Y = Pi

Y

Thus τ(Pdo(i)
X ) = Pdo(τ(i))

Y , i.e. the diagram commutes:

PX Pdo(i)
X

PY Pdo(τ(i))
Y

do(i)

do(τ(i))

τ τ



Example
...

...

...
...

...
...

...
...

do(Xt = x ∀t)

do(X = x)

T T
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Some questions

Given τ , what conditions required on X?

I i.e. measurement device fixed - when can we represent causal
structure?

Given X , what τ should we apply?

I i.e. how can we massage data to identify causal structure?

Given Y , what X can we abstractly represent?

I i.e. given restricted model class, when can we faithfully
represent more complex X?

Approximate abstraction by relaxing τ(Pdo(i)
X ) = Pdo(τ(i))

Y



Summary
Causal structure may exist on levels we cannot observe directly.

Questions:
I Under what conditions can we still represent such structure?
I How can we assign meaning to such representations?

Introduced a framework for analysing transformations

We can now ask:
I What conditions required on X , τ and Y for abstraction?



Fin

Thanks!
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Structural Equation Models (SEMs)

Z

YX

W

X = fX (EX )

Y = fY (EY )

Z = fZ (X ,Y ,EZ )

W = fW (Z ,EW )

Z

YX

W

do(Z = z)

X = fX (EX )

Y = fY (EY )

Z = z

W = fW (Z ,EW )



Example: Linear Gaussian Dynamics

Xt Yt

Xt+1 Yt+1

...
...

...
...

α

α

α

β

β

β

γ

γ

γ

Xt+1 = αXt +N (0, σ2
X )

Yt+1 = βXt + γYt +N (0, σ2
Y )

Suppose observations come from the
stationary distribution

=⇒


PXY

PY |do(X=x)

PX |do(Y=y)

Problem: unless α = 1, σ2
X = 0, cannot express distributions using

unconfounded SEM.



Example: Linear Gaussian Dynamics

Xt Yt

Xt+1 Yt+1

...
...

...
...

α

α

α

β

β

β

γ

γ

γ

Define ‘blurry measurements’:

X (T ) =
1√
T

T∑
t=1

Xt

Y (T ) =
1√
T

T∑
t=1

Yt

As T →∞, (X (T ),Y (T ))
d−→ (X ,Y ) for

which unconfounded SEM can express
observational and interventional
distributions.



Example: Linear Gaussian Dynamics

Xt Yt

Xt+1 Yt+1

...
...

...
...

α

α

α

β

β

β

γ

γ

γ

Introduce approximation error:

ε = min
SEM

sup
ζ∈{interventions}

KL[Pdo(ζ)|P̂do(ζ)]

where Pdo(ζ) is from true model,
P̂do(ζ) is from SEM approximation.

Then ε <∞, and ε→ 0 as α→ 1,
Var(X )→ c


